K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2018

O A B D C I H M d

1) Do DB và DC là 2 tiếp tuyến của (O) => ^DBO=^DCO=900 

=> Tứ giác DBOC nội tiếp đường tròn (Tâm là trung điểm OD) (1)

Xét tứ giác DHOC: ^DHO=^DCO=900 

=> Tứ giác DHOC nội tiếp đường tròn (Tâm là trung điểm DO) (2)

Từ (1) và (2) => 5 điểm D,H,B,O,C cùng nằm trên 1 đường tròn (đpcm)

DB và DC là 2 tiếp tuyến của (O) => DB=DC => D thuộc trung trực của BC

Mà BC là dây cung của (O) nên O cũng thuộc trung trực của BC  

=> OD \(\perp\)BC (tại I) => ^DIA=900

Xét tứ giác DIHA: ^DHA=^DIA=900 (cmt) => Tứ giác DIHA nội tiếp đường tròn (đpcm).

2) Dễ chứng minh \(\Delta\)OBI ~ \(\Delta\)ODB (g.g) => \(\frac{OB}{OD}=\frac{OI}{OB}\Rightarrow OB^2=OI.OD\)

Mà OB=OM (cùng nằm trên (O)) => \(OM^2=OI.OD\)(3)

Hoàn toàn c/m được \(\Delta\)OHD ~ \(\Delta\)OIA  (g.g) => \(\frac{OH}{OI}=\frac{OD}{OA}\Rightarrow OH.OA=OI.OD\)(4)

Từ (3) và (4) => \(OM^2=OH.OA\)=> \(\frac{OM}{OA}=\frac{OH}{OM}\)

Xét \(\Delta\)OHM và \(\Delta\)OMA: \(\frac{OM}{OA}=\frac{OH}{OM}\); ^MOA chung => \(\Delta\)OHM ~ \(\Delta\)OMA (c.g.c)

=> ^OHM=^OMA. Ta có ^OHM=900 => ^OMA=900 => AM là tiếp tuyến của (O) (đpcm).

3) Ta có 5 điểm B,H,D,O,C cùng thuộc 1 đường tròn (cmt)

Suy ra Tứ giác BHOC và tứ giác DHOC nội tiếp đường tròn

Tứ giác BHOC nội tiếp đg tròn => ^ABH=^COH (Cùng bù ^HBC)

Dễ thấy ^BAH=^HDO (Cùng phụ ^DOA) (5)

Do tứ giác DHOC nôi tiếp đg tròn => ^HDO=^OCH (6)

Từ (5); (6) => ^BAH=^OCH

Xét \(\Delta\)AHB và \(\Delta\)CHO: ^ABH=^COH; ^BAH=^OCH => \(\Delta\)AHB ~ \(\Delta\)CHO (g,g)

\(\Rightarrow\)\(\frac{HB}{HO}=\frac{AH}{HC}\Rightarrow HB.HC=AH.HO\)(7)

Nhận thấy Đường tròn (O) có tiếp tuyến AM cố định (Do A cố định) 

Mà MH\(\perp\)AO tại H => H cố định => AH và HO có giá trị không đổi 

Nên AH.HO không đổi (8)

Từ (7) và (8) => HB.HC không đổi khi d quay quanh A (đpcm).

16 tháng 6 2017

mọi người zải câu này nhanh nhanh zùm mk vs

19 tháng 12 2017

Câu hỏi của Mafia - Toán lớp 9 - Học toán với OnlineMath

Em có thể tham khảo tại đây nhé.

28 tháng 4 2017

EASY

24 tháng 5 2017

dễ thì làm đi

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0

a: Xét tứ giác OHDC có

góc OHD+góc OCD=180 độ

=>OHDC là tứ giác nội tiếp

b: Xét ΔOIA vuông tạiI và ΔOHD vuông tại H có

góc IOA chung

=>ΔOIA đồng dạng với ΔOHD

=>OI/OH=OA/OD

=>OI*OD=OH*OA

16 tháng 7 2020

Vì cậu làm câu a) rồi nên mình chỉ làm 2 câu còn lại thôi nhá (:

O H E C B D M A

a. Ta có: AB = AC (tính chất hai tiếp tuyến cắt nhau). Suy ra  \(\Delta ABC\)cân tại A.

AO là tia phân giác của góc BAC (tính chất hai tiếp tuyến cắt nhau)

Suy ra AO là đường cao của tam giác ABC (tính chất tam giác cân)

Ta có: AO vuông góc với BC tại H

Lại có: \(AB\perp OB\)( tính chất tiếp tuyến )

Tam giác ABO vuông tại B có \(BH\perp AO\)

Theo hệ thức lượng trong tam giác vuông, ta có:

\(OB^2=OH.OA\Rightarrow OH=\frac{OB^2}{OA}=\frac{32}{5}=1,8\left(cm\right)\)

b. Áp dụng định lí Pitago vào tam giác vuông ABO, ta có:

AO2 = AB2 + BO2

Suy ra: AB2 = AO2 – BO2 = 52 – 32 = 16

AB = 4 (cm)

Theo tính chất của hai tiếp tuyến cắt nhau ta có:

DB = DM

EM = EC

Chu vi của tam giác ADE bằng:

AD + DE + EA = AD + DB + AE + EC

= AB + AC = 2AB = 2 . 4 = 8 ( cm )

24 tháng 4 2016

Một mảnh đất hình chữ nhật có chiều dài hơn chiều rộng là 24m và bằng 5/8 Chiều dài . Tính diện tích mảnh đất đó ? giúp mình giải bài này Thanks cả nhà.
 

25 tháng 5 2016

Ta có tiếp tuyến tại B,C và vì B,C cùng nằm trên 1 dg thẳng =>2 tiếp tuyến này song song với nhau nên 2 tiếp tuyến này ko thể cắt nhau => đề sai