Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để mình hướng dẫn vậy :
a) Bạn tự chứng minh
b) Vì I là trung điểm của PQ nên I cũng là trung điểm của AM. Gọi I' là giao điểm của OE và AM , chứng minh tam giác AFI' = tam giác MEI' rồi suy ra AI' = I'M=> I' trùng với I => đpcm
c) Bạn chứng minh tam giác MEA đều rồi => góc MAE = AEM = POM rồi tiếp tục suy ra OMP = OEA => tam giác đồng dạng.
Để mình hướng dẫn vậy :
a) Bạn tự chứng minh
b) Vì I là trung điểm của PQ nên I cũng là trung điểm của AM. Gọi I' là giao điểm của OE và AM , chứng minh tam giác AFI' = tam giác MEI' rồi suy ra AI' = I'M=> I' trùng với I => đpcm
c) Bạn chứng minh tam giác MEA đều rồi => góc MAE = AEM = POM rồi tiếp tục suy ra OMP = OEA => tam giác đồng dạng.
A B C O H D E F P Q M N
a) Dễ có tứ giác BCEF nội tiếp đường tròn (BC). Suy ra ^BPQ = ^AFE = ^ECB = ^BCQ
Vậy tứ giác BPCQ nội tiếp (Quỹ tích cung chứa góc) (đpcm).
b) Có ^BPQ = ^BCQ = ^BFD (cmt) hay ^DPF = ^DFP. Vậy \(\Delta\)DPF cân tại D (đpcm).
c) Dễ thấy NE là tiếp tuyến của (AEF), suy ra ^NEF = ^EAF = ^BDF = 1800 - ^FDN
Suy ra tứ giác DFEN nội tiếp. Khi đó \(\Delta\)MFD ~ \(\Delta\)MNE (g.g). Vậy MF.ME = MD.MN (đpcm).
d) Ta thấy ^FDB = ^EDC (=^BAC); ^DNE = ^DFM (Vì tứ giác DFEN nội tiếp)
Do đó \(\Delta\)DEN ~ \(\Delta\)DMF (g.g). Từ đây DN.DM = DE.DF (1)
Từ câu b, ta có \(\Delta\)DPF cân tại D (DF = DP). Tương tự DE= DQ (2)
Từ (1) và (2) suy ra DN.DM = DP.DQ dẫn đến \(\Delta\)DPM ~ \(\Delta\)DNQ (c.g.c)
Suy ra 4 điểm M,P,Q,N cùng thuộc một đường tròn hay (MPQ) đi qua N cố định (đpcm).
a: Xét (O) có
ΔABC nội tiếp
AC là đường kính
Do đó: ΔABC vuông tại B
Xét (O) có
ΔAFC nội tiêp
AC là đường kính
Do đó: ΔAFC vuông tại F
Xét ΔHBA vuông tại B và ΔHFC vuông tại F có
góc BHA=góc FHC
DO đó: ΔHBA đồng dạng với ΔHFC
=>HB/HF=HA/HC
=>HB*HC=HF*HA
b: Kẻ EG vuông góc với DA
Xet tứ giác EDHA có
ED//HA
EA//HD
Do đó: EDHA là hình bình hành
=>EA=DH
=>ΔEAG=ΔHDB
=>AG=BD=2AB
=>B là trung điểm của AG
=>BG=GD
=>ΔEBD cân tại E
2) xét tam giác BMC có ba đường cao BA,ME,CD =>ba đường thẳng đó đồng quy
4) chứng minh t/g AMEB nội tiếp => góc MAE= MBE ( hai góc nội tiếp cùng chắn cung ME)
có goc DAC=DBC( vi t/g ABCD nội tiếp )
=>MAE=DAC (=goc MBC) =>AC là phân giác của DAM
xét tam giác ADEcó: MN và AC là hai tia phân giác cắt nhau tại M => M là tâm đường tròn nội tiếp tam giác ADE
vui lòng viết dấu để mình trả lời