Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{2003}=\frac{b}{2005}=\frac{c}{2007}=k\)\(\Rightarrow a=2003k;b=2005k;c=2007k\)
\(\Rightarrow VT=\frac{\left(a-c\right)^2}{4}=\frac{\left(2003k-2007k\right)^2}{4}=\frac{\left(-4k\right)^2}{4}=\frac{16k^2}{4}=4k^2\left(1\right)\)
\(VP=\left(a-b\right)\left(b-c\right)=\left(2003k-2005k\right)\left(2005k-2007k\right)\)
\(=\left(-2k\right)\cdot\left(-2k\right)=4k^2\left(2\right)\)
Từ (1) và (2) ->Đpcm
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=\frac{a-b}{2003-2004}=\frac{b-c}{2004-2005}=\frac{c-a}{2005-2003}\)
\(\Leftrightarrow\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)
\(\Rightarrow\left(\frac{a-b}{-1}\right)\left(\frac{b-c}{-1}\right)=\left(\frac{c-a}{2}\right)^2\)
\(\Rightarrow\left(a-b\right)\left(b-c\right)=\frac{\left(c-a\right)^2}{4}\)
\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
Vậy ...
Đặt: \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=b\Rightarrow\hept{\begin{cases}a=2003b\\b=2004b\\c=2005b\end{cases}}\)
\(\Rightarrow4\left(a-b\right)\left(b-c\right)=4\left(2003b-2004b\right)\left(2004b-2005b\right)=4.-b.-b=4b^2\)
\(\Rightarrow\left(c-a\right)^2=\left(2005b-2003b\right)^2=2k^2=4k^2\)
\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\left(đpcm\right)\)
Đặt a/2003=b/2004=c/2005=k
Suy ra a=2003k, b=2004k, c=2005k (*)
Thay (*) vào 4(a-b)(b-c) ta được:
4(a-b)(b-c)=4(2003k-2004k) (2004k-2005k)
=4k(2003-2004).k(2004-2005)=4k2 .-1.-1
=4.k2 (1)
Thay (*) vào (c-a)2 ta được:
(c-a)2 =(2005k-2003k)2
= k2 (2005-2003)2
=k2 .4 (2)
Từ (1) và (2)
Suy ra ĐPCM
nha
Mình cũng học lớp 7 nhưng lần đầu mình thấy những loại toán này
coi \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=k\Rightarrow a=2003k;b=2004k;c=2005k\)
thay mấy cái trên vào 4(a-b)(b-c)và (c-a)2
\(\frac{a}{n+2}=\frac{b}{n+5}=\frac{c}{n+8}=k\Leftrightarrow a=nk+2k;b=nk=5k;c=nk+8k\)
\(\left(a+c\right)^2=\left(nk+2k+nk+8k\right)^2=4k^2\left(n+5\right)^2\) ( sai nhế)
\(4\left(a-b\right)\left(b-c\right)=4\left(nk+2k-nk-5k\right)\left(nk+5k-nk-8k\right)=4\left(-3k\right)\left(-3k\right)=36k^2\)
\(\left(a-c\right)^2=\left(nk+2k-nk-8k\right)^2=4\left(-6k\right)^2=36k^2\)
=> \(\left(a-c\right)^2=4\left(a-b\right)\left(b-c\right)\)
Bài 1:
Nếu a,b,c # 0 thì theo tính chất của dãy tỉ số bằng nhau , ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Nếu a + b + c = 0 thì b + c = -a ; c + a = - b ; a + b = -c
<=> Tỉ số của \(\frac{a}{b+c};\frac{c}{c+a};\frac{c}{a+b}\) Bằng -1
đặt a/2003=b/2005=c/2007=t
=>a=2003t;b=2005t;c=2007t
ta có:\(VT=\frac{\left(a-c\right)^2}{4}=\frac{\left(2003t-2007t\right)^2}{4}=\frac{\left(-4t\right)^2}{4}=\frac{\left(-4\right)^2.t^2}{4}=\frac{16.t^2}{4}=\frac{4.4.t^2}{4}=4t^2\) (1)
\(VP=\left(a-b\right)\left(b-c\right)=\left(2003t-2005t\right)\left(2005t-2007t\right)=\left(-2\right).t.\left(-2\right).t=\left[\left(-2\right).\left(-2\right)\right].t^2=4t^2\left(2\right)\)
từ (1);(2) ta có VT=VP=>đpcm