K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2021

\(u_{n+1}-1=u_n\left(u_n-1\right)\Leftrightarrow\dfrac{1}{u_{n+1}-1}=\dfrac{1}{u_n-1}-\dfrac{1}{u_n}\Rightarrow\dfrac{1}{u_n}=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}\)

Lan luot the i vo n:

\(\dfrac{1}{u_1}=\dfrac{1}{u_1-1}-\dfrac{1}{u_2-1}\)

\(\dfrac{1}{u_2}=\dfrac{1}{u_2-1}-\dfrac{1}{u_3-1}\)

...

\(\dfrac{1}{u_n}=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}\)

Cong ve voi ve:

\(\dfrac{1}{u_1}+\dfrac{1}{u_2}+...+\dfrac{1}{u_n}=\dfrac{1}{u_1-1}-\dfrac{1}{u_{n+1}-1}\)

Do dãy tăng và ko bị chặn trên <bạn thay vô là biết>

\(\Rightarrow\lim\limits\left(u_{n+1}-1\right)=+\infty\Rightarrow\lim\limits\sum\limits^n_{i=1}\dfrac{1}{u_i}=\lim\limits\left(\dfrac{1}{u_1-1}-\dfrac{1}{u_{n+1}-1}\right)=1\)

10 tháng 9 2023

a) Để chứng minh rằng Un > 1 đối với mọi N và Un là dãy tăng, ta có thể sử dụng phương pháp quy nạp.

Bước cơ sở: Ta thấy rằng u1 = 2 > 1.

Bước giả sử: Giả sử đúng đối với một số nguyên k ≥ 1, tức là uk > 1.

Bước bước: Ta sẽ chứng minh rằng uk+1 > 1. Từ công thức cho dãy (Un), ta có:

uk+1 = uk-2015 + uk + 1/uk - uk + 3

Vì uk > 1 (theo giả thiết giả sử), ta có uk - 2015 > 0 và uk + 3 > 0. Do đó, uk+1 > 0.

Vì vậy, ta có uk+1 > 1, và đẳng thức này đúng đối với mọi số nguyên k ≥ 1.

Do đó, ta chứng minh được rằng Un > 1 đối với mọi N và Un là dãy tăng.

b) Để tính limn∑i=11uk - i + 2, ta có thể sử dụng định nghĩa của dãy (Un) và công thức tổng của dãy số aritmeti.

Từ công thức cho dãy (Un), ta có:

uk - i + 2 = uk - 2015 - i + uk + 1 - i + uk + 2 - i

Vì Un là dãy tăng, ta có thể viết lại công thức trên như sau:

uk - i + 2 = uk - 2015 - i + uk + 1 - i + uk + 2 - i

= (uk+1 - 2015 + uk + 1) - (uk - 2015 + uk) + (uk+1 - uk)

= 2uk+1 - 2uk + 2015

Do đó, ta có thể viết lại tổng như sau:

∑i=11uk - i + 2 = 2∑i=11uk+1 - 2∑i=11uk + 2015∑i=1

= 2(u12 - u2) + 2015(12)

Với giá trị cụ thể của u12 và u2, ta có thể tính được tổng trên.

17 tháng 2 2020

ta có : \(u_n=\frac{1+2^m}{2^m}\Rightarrow lim\left(u_n\right)=lim\left(\frac{1+2^m}{2^m}\right)=lim\left(1+\frac{1}{2^m}\right)=1\)

NV
22 tháng 9 2019

\(u_1=\sqrt{3}=tan\frac{\pi}{3}\)

Mặt khác \(tan\frac{\pi}{8}=\sqrt{2}-1\Rightarrow u_{n+1}=\frac{u_n+tan\frac{\pi}{8}}{1-u_n.tan\frac{\pi}{8}}\)

Nhìn công thức \(u_{n+1}\) có dạng \(tan\left(a+b\right)\) nên ta thay thử vài giá trị tìm quy luật

\(u_2=\frac{u_1+tan\frac{\pi}{8}}{1-tan\frac{\pi}{8}.u_1}=\frac{tan\frac{\pi}{3}+tan\frac{\pi}{8}}{1-tan\frac{\pi}{8}.tan\frac{\pi}{3}}=tan\left(\frac{\pi}{3}+\frac{\pi}{8}\right)\)

\(u_3=\frac{tan\left(\frac{\pi}{3}+\frac{\pi}{8}\right)+tan\frac{\pi}{8}}{1-tan\left(\frac{\pi}{3}+\frac{\pi}{8}\right).tan\frac{\pi}{8}}=tan\left(\frac{\pi}{3}+\frac{\pi}{8}+\frac{\pi}{8}\right)=tan\left(\frac{\pi}{3}+2.\frac{\pi}{8}\right)\)

Dự đoán số hạng tổng quát có dạng: \(u_n=tan\left(\frac{\pi}{3}+\left(n-1\right)\frac{\pi}{8}\right)\)

Giả sử công thức đúng với \(n=k\) hay \(u_k=tan\left(\frac{\pi}{3}+\left(k-1\right)\frac{\pi}{8}\right)\)

Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay \(u_{k+1}=tan\left(\frac{\pi}{3}+k\frac{\pi}{8}\right)\)(các số hạng đầu đã kiểm tra nên chứng minh quy nạp chắc khỏi cần kiểm tra lại)

Thật vậy, với \(n=k+1\) ta có:

\(u_{k+1}=\frac{u_k+tan\frac{\pi}{8}}{1-u_k.tan\frac{\pi}{8}}=\frac{tan\left(\frac{\pi}{3}+\left(k-1\right)\frac{\pi}{8}\right)+tan\frac{\pi}{8}}{1-tan\frac{\pi}{8}.tan\left(\frac{\pi}{3}+\left(k-1\right)\frac{\pi}{8}\right)}\)

\(=tan\left(\frac{\pi}{3}+\left(k-1\right)\frac{\pi}{8}+\frac{\pi}{8}\right)=tan\left(\frac{\pi}{3}+k\frac{\pi}{8}\right)\) (đpcm)