K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 8 2021

\(u_{n+1}=\dfrac{2}{3}u_n+\dfrac{2}{3}\Rightarrow u_{n+1}-2=\dfrac{2}{3}\left(u_n-2\right)\)

Đặt \(u_n-2=v_n\Rightarrow\left\{{}\begin{matrix}v_1=u_1-2=1\\v_{n+1}=\dfrac{2}{3}v_n\end{matrix}\right.\)

\(\Rightarrow v_n\) là CSN với công bội \(q=\dfrac{2}{3}\Rightarrow v_n=1.\left(\dfrac{2}{3}\right)^{n-1}=\left(\dfrac{2}{3}\right)^{n-1}\)

\(\Rightarrow u_n=v_n+2=\left(\dfrac{2}{3}\right)^{n-1}+2\)

NV
20 tháng 6 2021

Từ công thức dãy số ta thấy \(u_n\) là cấp số cộng với \(\left\{{}\begin{matrix}u_1=2\\d=3\end{matrix}\right.\)

\(\Rightarrow u_n=u_1+\left(n-1\right)d=2+\left(n-1\right)3=3n-1\)

\(\Rightarrow I=\lim\limits\dfrac{3n-1}{3n+1}=1\)

23 tháng 12 2021

\(u_{n+1}=\sqrt{1+u_n^2}\left(1\right)\)

\(u_1=3=\sqrt{9}\)

\(u_2=\sqrt{1+u_1^2}=\sqrt{10}\)

\(u_3=\sqrt{1+u_2^2}=\sqrt{11}\)

...

Dự đoán công thức:\(u_n=\sqrt{n+8}\),\(n\ge1\) (*)

Thật vậy 

+)\(n=1,(*)\)\(\Leftrightarrow u_1=3\) (lđ)

+)Giả sử (*) đúng với mọi \(n=k,k>1\)

\((*)\Leftrightarrow u_k=\sqrt{k+8}\)

+)\(n=k+1,\) thay vào (1) có: \(u_{k+2}=\sqrt{1+u^2_{k+1}}=\sqrt{1+\left(\sqrt{1+u_k^2}\right)^2}=\sqrt{2+u^2_k}=\sqrt{2+k+8}=\sqrt{10+k}\)

\(\Rightarrow\)(*) đúng với n=k+1

Vậy CTSHTQ: \(u_n=\sqrt{n+8}\)\(n\ge1\)

15 tháng 10 2023

1:

a: \(u_2=2\cdot1+3=5;u_3=2\cdot5+3=13;u_4=2\cdot13+3=29;\)

\(u_5=2\cdot29+3=61\)

b: \(u_2=u_1+2^2\)

\(u_3=u_2+2^3\)

\(u_4=u_3+2^4\)

\(u_5=u_4+2^5\)

Do đó: \(u_n=u_{n-1}+2^n\)

11 tháng 2 2022

Xét \(\dfrac{1}{u_{n+1}}=\dfrac{u_n+4}{2u_n}=\dfrac{1}{2}\left(1+\dfrac{4}{u_n}\right)\) (1)

Đặt \(\dfrac{1}{u_n}=x_n\)

(1) <=> \(x_{n+1}=\dfrac{1}{2}\left(4x_n+1\right)=2x_n+\dfrac{1}{2}\)

<=> \(x_{n+1}+\dfrac{1}{2}=2\left(x_n+\dfrac{1}{2}\right)\) (2) 

Đặt \(x_n+\dfrac{1}{2}=t_n\)

(2) <=> tn+1 = 2.tn => q = 2

Có: \(t_n=t_1.2^{n-1}\)

Mà \(t_1=x_1+\dfrac{1}{2}=\dfrac{1}{u_1}+\dfrac{1}{2}=\dfrac{3}{2}\)

=> \(t_n=\dfrac{3}{2}.2^{n-1}\)

=> \(x_n=\dfrac{3}{2}.2^{n-1}-\dfrac{1}{2}\)

=> \(u_n=\dfrac{2}{3.2^{n-1}-1}\)

9 tháng 4 2017

a) Ta có:

u1 = 2, u2 = 2u1 – 1 = 3, u3 = 2u2 – 1= 5

u4 = 2u3 -1 = 9, u5 = 2u4 – 1= 10

b) Với n = 1, ta có: u1 = 21-1 + 1 = 2 : đúng

Giả sử công thức đúng với n = k. Nghĩa là: uk = 2k-1 + 1

Ta chứng minh công thức cũng đúng với n = k + 1,

Nghĩa là chứng minh:

Uk+1 = 2(k+1)-1 + 1 = 2k + 1

Ta có: uk+ 1 = 2uk – 1 = 2(2k -1+ 1) -1 = 2.2k -1 + 2 – 1 = 2k + 1 (đpcm)

Vậy un = 2n-1 + 1 với mọi n ∈ N*



25 tháng 12 2021

help me :((

 

26 tháng 12 2021

Chọn C