K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 11 2021

Dãy đã cho hiển nhiên là dãy dương

Ta sẽ chứng minh dãy đã cho bị chặn trên bởi 2 hay \(u_n\le2\) với mọi n

- Với \(n=1\Rightarrow u_1=\sqrt{2}< 2\) (đúng)

- Giả sử điều đó đúng với \(n=k\ge1\) hay \(u_k\le2\)

- Ta cần chứng minh với  \(n=k+1\) cũng đúng

Hay \(u_{k+1}\le2\)

Ta có: \(u_{k+1}=\sqrt{2+u_k}\le\sqrt{2+2}=2\) (đpcm)

Vậy \(u_n\le2\)

Đặt \(v_n=\dfrac{1}{2}u_n\Rightarrow0< v_n\le1\) và \(\left\{{}\begin{matrix}v_1=\dfrac{\sqrt{2}}{2}=cos\left(\dfrac{\pi}{4}\right)\\2v_{n+1}=\sqrt{2+2v_n}\end{matrix}\right.\) 

\(\Rightarrow4v_{n+1}^2=2+2v_n\Rightarrow v_n=2v_{n+1}^2-1\)

Do \(0< v_n\le1\) , đặt \(v_n=cos\left(x_n\right)\) với \(x_n\in\left(0;\pi\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{\pi}{4}\\cos\left(x_n\right)=2cos^2\left(x_{n+1}\right)-1=cos\left(2x_{n+1}\right)\end{matrix}\right.\)

\(\Rightarrow x_n=2x_{n+1}\Rightarrow x_{n+1}=\dfrac{1}{2}x_n\)

\(\Rightarrow x_n\) là CSN với công bội \(\dfrac{1}{2}\)

\(\Rightarrow x_n=\dfrac{\pi}{4}.\left(\dfrac{1}{2}\right)^{n-1}=\dfrac{\pi}{2^{n+1}}\)

\(\Rightarrow v_n=cos\left(x_n\right)=cos\left(\dfrac{\pi}{2^{n+1}}\right)\)

\(\Rightarrow u_n=2v_n=2cos\left(\dfrac{\pi}{2^{n+1}}\right)\)

Dãy \(\dfrac{\pi}{2^{n+1}}\) giảm và thuộc \(\left(0;\dfrac{\pi}{2}\right)\) nên \(cos\left(\dfrac{\pi}{2^{n+1}}\right)\) tăng

Do đó dãy số đã cho là dãy tăng.

P/s: đây là cách làm hoàn chỉnh có thứ tự (nhược điểm là rất dài). Có 1 cách khác đơn giản hơn là bằng 1 phép màu nào đó ngay từ đầu bạn đưa ra ngay dự đoán công thức tổng quát của dãy số là \(2cos\left(\dfrac{\pi}{2^{n+1}}\right)\) rồi chứng minh nó bằng quy nạp cũng được. Như vậy sẽ rất ngắn, cả bài chỉ 4-5 dòng nhưng lời giải hơi đột ngột

NV
22 tháng 9 2019

Dãy số đã cho hiển nhiên là dãy dương

\(u_3=2>1\Rightarrow\) dự đoán dãy trên là dãy tăng hay \(u_{n+1}>u_n\) \(\forall n\ge2\)

Với \(n=2\) ta có \(u_3>u_2\) (đúng)

Giả thiết cũng đúng với \(n=k\) hay \(u_{k+1}>u_k\)

Ta cần chứng minh \(u_{k+1}>u_{k+1}\)

Thật vậy, \(u_{k+2}=\sqrt{u_{k+1}}+\sqrt{u_k}>\sqrt{u_k}+\sqrt{u_{k-1}}=u_{k+1}\)

Mặt khác \(u_n=\sqrt{u_{n-1}}+\sqrt{u_{n-2}}< \sqrt{u_n}+\sqrt{u_n}=2\sqrt{u_n}\)

\(\Rightarrow u_n^2< 4u_n\Rightarrow u_n< 4\)

\(\Rightarrow\) Dãy số tăng và bị chặn trên nên nó có giới hạn

Gọi giới hạn của dãy số là \(a\Rightarrow lim\left(u_n\right)=lim\left(u_{n-1}\right)=lim\left(u_{n+1}\right)=a\)

Từ biểu thức: \(u_{n+1}=\sqrt{u_n}+\sqrt{u_{n-1}}\)

Lấy giới hạn 2 vế: \(\Rightarrow a=\sqrt{a}+\sqrt{a}\Rightarrow\left[{}\begin{matrix}a=0\left(l\right)\\a=4\end{matrix}\right.\)

Vậy \(lim\left(u_n\right)=4\)

NV
2 tháng 3 2021

Đặt \(v_n=u_n^2\Rightarrow\left\{{}\begin{matrix}v_1=2851\\v_{n+1}=v_n+n\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}v_1=2851\\v_{n+1}-\dfrac{1}{2}\left(n+1\right)^2+\dfrac{1}{2}\left(n+1\right)=v_n-\dfrac{1}{2}n^2+\dfrac{1}{2}n\end{matrix}\right.\)

Đặt \(v_n-\dfrac{1}{2}n^2+\dfrac{1}{2}n=x_n\Rightarrow\left\{{}\begin{matrix}x_1=2851\\x_{n+1}=x_n=...=x_1=2851\end{matrix}\right.\)

\(\Rightarrow v_n=\dfrac{1}{2}n^2-\dfrac{1}{2}n+2851\)

\(\Rightarrow u_n=\sqrt{\dfrac{1}{2}n^2-\dfrac{1}{2}n+2851}\Rightarrow u_{2020}=1429\)

NV
28 tháng 2 2021

Từ công thức truy hồi ta được:

\(u_n=sin1+\dfrac{sin2}{2^2}+\dfrac{sin3}{3^2}+...+\dfrac{sinn}{n^2}\)

\(\Rightarrow\left|u_n\right|=\left|sin1+\dfrac{sin2}{2^2}+...+\dfrac{sinn}{n^2}\right|\le\left|sin1\right|+\left|\dfrac{sin2}{2^2}\right|+...+\left|\dfrac{sinn}{n^2}\right|\)

\(\Rightarrow\left|u_n\right|< \left|1\right|+\left|\dfrac{1}{2^2}\right|+\left|\dfrac{1}{3^2}\right|+...+\left|\dfrac{1}{n^2}\right|=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\)

Lại có:

\(1+\dfrac{1}{2^2}+...+\dfrac{1}{n^2}< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}=2-\dfrac{1}{n}< 2\)

\(\Rightarrow\left|u_n\right|< 2\Rightarrow u_n\) là dãy bị chặn

19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

Dãy số - cấp số cộng và cấp số nhân