K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔBAC vuông tại B có góc A=45 độ

nên ΔBAC vuông cân tại B

=>BA=BC=2a

AC=căn AB^2+BC^2=2a*căn 2

b: BH=BA*BC/AC=4a^2/2*a*căn 2=a*căn 2

c: S ABC=1/2*2a*2a=2a^2

d: C=2a+2a+2a*căn 2=4a+2a*căn 2

Gọi O là tâm đường tròn ngoại tiếp ΔABC

Gọi H là giao của AO với BC

AB=AC

OB=OC

Do đó: AO là trung trực của BC

=>AH là trung trực của BC

=>H là trung điểm của BC

HB=HC=4/2=2cm

Kẻ giao của AO với (O) là D

=>AD là đường kính của (O)

Xét (O) có

ΔABD nội tiếp

ADlà đường kính

Do đó: ΔBAD vuông tại B

ΔAHB vuông tại H

=>AH^2+HB^2=AB^2

=>\(AH^2=6^2-2^2=32\)

=>\(AH=4\sqrt{2}\left(cm\right)\)

Xét ΔBAD vuông tại B có BH là đường cao

nên AB^2=AH*AD

=>\(AD=\dfrac{6^2}{4\sqrt{2}}=\dfrac{9}{\sqrt{2}}\left(cm\right)\)

=>\(R=\dfrac{AD}{2}=\dfrac{9}{2\sqrt{2}}\left(cm\right)\)

2 tháng 10 2021

1.

\(a,\sin\widehat{B}=\sin60^0=\dfrac{AC}{BC}=\dfrac{\sqrt{3}}{2}\Leftrightarrow AC=\dfrac{12\sqrt{3}}{2}=6\sqrt{3}\left(cm\right)\\ b,AC^2=CH\cdot BC\left(HTL.\Delta\right)\\ \Rightarrow CH=\dfrac{AC^2}{BC}=9\left(cm\right)\)

 

2 tháng 10 2021

Tim Gia Tri Nho Nhat Cua 

a) A = x - 4 can x + 9

b) B = x - 3 can x - 10 

c ) C = x - can x + 1 

d ) D = x + can x + 2 

2 tháng 11 2021

a, \(AB=\sqrt{BC^2-AC^2}=10\sqrt{5}\left(cm\right)\)

\(\cos B=\dfrac{AC}{BC}=\dfrac{2}{3}\approx48^0\Rightarrow\widehat{B}\approx48^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}\approx90^0-48^0=42^0\)

b, Áp dụng HTL: \(\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=\dfrac{20\sqrt{5}}{30}\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{40}{3}\left(cm\right)\end{matrix}\right.\)

Bài 2: 

b: \(AH\cdot\left(\cot\widehat{B}+\cot\widehat{C}\right)\)

\(=AH\cdot\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)

\(=AH\cdot\dfrac{BC}{AH}=BC\)