Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- N nằm trên đường trung trực đoạn AB nên N cách đều AB hay AN =BN . Vậy tam giác ANB cân tại N
- Có : MN vuông góc AB & AC vuông góc AB ( GT) nên MN song song AC . Mà M là tđ AB nên MN là đg TB tam giac BAC . Suy ra N là tđ BC
Mình chưa học đường trung bình bạn giảii bằng cách khác đc ko.
a: Xét ΔNAB có
NM vừa là đường cao, vừa là trung tuyến
nên ΔBAN cân tại N
b: Xét ΔBAC có
M là trung điểm của BA
MN//AC
Do đó: N là trung điểm của BC
a) Xét △ABM vuông tại A và △DBM vuông tại D có:
BM chung
AB=DB=3cm(gt)
=> △ABM=△DBM (cạnh huyền-cạnh góc vuông) => AM=DM(2 cạnh t/ứ)
b) Xét △AMN và △DMC có:
AMN=DMC(2 góc đối đỉnh)
AM=DM(cmt)
MAN=MDC(gt)
=> △AMN=△DMC(g.c.g) => MN=MC(2 cạnh tướng ứng) => △MCN cân tại M
c) Vì △AMN=△DMC(cmt) => AN=DC(2 cạnh tương ứng)
Ta có AB=BD;AN=DC;BN=AN+AB;BC=BD+DC => BN=BC=> △BNC cân tại B
Vì △ABM=△DBM(cmt)=> ABM=DBM=> NBK=CBK (A thuộc BN; D thuộc BC;M thuộc BK) => BK là phân giác NBC
=> Trong △BNC cân tại B, BK là đường phân giác, đường trung trực, đường trung tuyến, đường cao,... (t/c) => BK là đường trung trực của CN
d) Áp dụng định lý Pytago vào △ABC vuông tại A có: AB2+AC2=BC^2
=> 9+16=25=BC^2 (cm) => BC = 5 cm
Ta có BD+DC=BC;BD=3cm=> DC=2cm
Ta có AN=DC(cmt) => AN=2cm
Áp dụng định lý Pytago vào △ANC vuông tại A có:
AN^2+AC^2=NC^2
=> 4+16=NC^2
=> NC= căn 20 = 2 x căn 5 (cm)
Vì BK là trung trực NC => K là trung điểm NC => KC = 1/2 NC = căn 5 (cm)
Áp dụng định lý Pytago vào △BKC vuông tại K có:
BC^2=BK^2+KC^2 => BK^2=BC^2+KC^2=25-5=20cm => BK=căn 20=2 nhânnhân căn 5 (cm)
a) áp dụng định lí py-ta-go ta có:
\(BC^2=AB^2+AC^2\)
=> 225 = 81 + 144 = 225
=> tam giác ABC là tam giác vuông
trong tam giác vuông ABC có \(\widehat{A}\)> \(\widehat{B}\)>\(\widehat{C}\)(15cm>12cm > 9cm) vì góc đối diện vs cạnh lớn hơn là góc lớn hơn
vậy \(\widehat{A}\)>\(\widehat{B}\)>\(\widehat{C}\)
b) xem lại đề bài
9cm A B C 12cm 15cm D
a/ áp dụng định lý py - ta - go vào tam giác ABC vuông tại A có :
AB2 +AC2 = BC2
<=> 62 +AC2 = 102
<=> AC2 = 64
<=> AC=8 (cm )
ta có AB < AC < BC (6 < 8 < 10 )
=> \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\) ( quan hệ giữa góc và cạnh )
b/ xét tam giác CAB và CAD có
CA chung
AB = AD ( vì A là trung điểm của BD )
\(\widehat{CAB}=\widehat{CAD}\)( = 90 độ )
=> tam giác CAB = tam giác CAD ( c - g - c )
=> CB = CD
=> tam giác BCD cân tại C
các câu còn lại mk k biết làm dâu
học tốt
A B C D K Q M 1 2 1
a) Có: Tam giác ABC vuông tại A => AB2+AC2=BC2 (ĐL Pytago) <=> AC2=BC2-AB2 => AC2=102-62
=> AC2=100-36=64 => AC2=82 =>AC=8 (cm)
=> AB<AC<BC => ^BAC>^ABC>^ACB (Quan hệ giữa góc và cạnh đối xứng trong tam giác)
b) ^A=900, A là trung điểm của BD => AC là trung trực của đoạn thẳng BD => CB=CD (Tính chất đường trung trực)
=> Tam giác BCD cân tại C (đpcm)
c) Xét tam giác BCD: A là trung điểm của BD, K là trung điểm của BC, AC giao DK tại M.
=> M là trọng tâm của tam giác BCD => MC=2/3AC (T/c 3 đường trung tuyến) => MC=2/3.8\(\approx\)5,3 (cm)
d) \(\Delta\)ABC=\(\Delta\)ADC (c.g.c) => ^C1=^C2 (2 góc tương ứng) (1)
Điểm Q thuộc trung trực của AC => QA=QC => Tam giác AQC cân tại Q => ^A1=^C1 (2)
Từ (1) và (2) => ^C2=^A1. Mà 2 góc đó nằm ở vị trí so le trong => AQ//BC
Lại có: AQ//BC và A là trung điểm của BD => AQ là đường trung bình của tam giác BCD.
=> Q là trung điểm của DC => BQ là trung tuyến của tam giác BCD. Mà M là trọng tâm của tam giác BCD
=> BQ đi qua điểm M hay 3 điểm B,M,Q thẳng hàng (đpcm) .
a, AB2 + AC2 = BC2 \(\Rightarrow\) AC2 = BC2 - AB2 hay AC 2 = 10 2 - 62 = 64 \(\Rightarrow\)AC2 = \(\sqrt{\left(64^{ }\right)^2}\)\(\Rightarrow\) AC = 8
SO SÁNH : AB < AC < BC ( 6 < 8 < 10 )
b, xét \(\Delta\)ABC ( \(\widehat{BAC}\)= \(90^0_{ }\)) =và \(\Delta\)ADC (\(\widehat{DAC}\)= 90 độ)
AB = AD ( A là trung điểm BD )
AC : cạnh chung
\(\Rightarrow\)\(\Delta\)ABC = \(\Delta\)ADC ( 2 cạnh góc vuông )
\(\Rightarrow\)BC = DC ( 2 cạnh tương ứng )
\(\Rightarrow\)\(\Delta\)BCD cân
ý c với d mình đang nghĩ đới nhá ^_^
Gọi I là giao điểm của CM và AN
a, xét tam giác AMN và tam giác BMN ta có:
+ MB = MA ( M là trung điểm của AB )
+ M1 = M2 ( góc vuông = 90độ )
+ MN là cạnh chung
=> hai tam giác trên = nhau ( c . g . c )
=> góc BNM = góc MNA ( 2 góc tương ứng ) (1)
vì M nằm giữa AB (2)
từ (1) và (2)=> MN là tia phân giác của góc BNA
MN vừa là đg trung trực , phân giác => tam giác ANB cân