Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Vu Duc Manh - Toán lớp 7 - Học toán với OnlineMath
A B E O C D M
a) Xét \(\Delta\)MDC và \(\Delta\)MAB có: MC = MB (gt) ; ^CMD = ^BMA ( đối đỉnh ) ; MD = MA
=> \(\Delta\)MDC = \(\Delta\)MAB => AB = DC ; ^MBA = ^MCD mà hai góc này ở vị trí so le trong => AB // CD
b) ^MBA = ^MCD mà ^MBA + ^MCA = 90o => ^MCD + ^MCA = 90o => ^ACD = 90o
Xét \(\Delta\)ABC và \(\Delta\)CDA có: AB = CD ( theo a) ; ^ACD = ^CAB ( =90o ) ; AC chung
=> \(\Delta\)ABC = \(\Delta\)CDA => BC = AD => AM =AD/2 = BC/2
c) \(\Delta\)ABC = \(\Delta\)CDA => ^ACB = CAD (1)
Lại có: \(\Delta\)BCE có: BA vuông CE; A là trung điểm EC => \(\Delta\)CBE cân => ^ACB = ^AEB (2)
Từ (1); (2) => ^CAM = ^CEB mà hai góc ở vị trí đồng vị => AM//EB
d) Để AC = BC/2 => AC = AM = CM =>\(\Delta\)AMC đều => ^ACB = ^ACM = 60o
=> \(\Delta\)ABC vuông tại A có điều kiện ^C = 60o
e) \(\Delta\)EBC cân tại B ( đã chứng minh ở câu c) => BE = BC mà BC = AD (đã chứng minh ở câu b)
=> BE = AD
^DAO = ^^OBE ( so le trong ; AM // BE )
AO = OB ( O là trung điểm AB )
=> \(\Delta\)AOD = \(\Delta\)BOE => ^AOD = ^BOE mà ^AOD + ^DOB = ^AOB = 180 độ => ^DOB + ^BOE = 180 độ => ^DOE = 180 độ
=> D; O; E thẳng hàng.
A B C M D
Trên tia đối của MA lấy điểm D sao cho MA = MD
Xét \(\Delta ABM\) và \(\Delta DCM\) có:
\(BM=CM\left(gt\right)\)
\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)
\(MA=MD\) (cách vẽ)
\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)
\(\Rightarrow AB=CD\)(2 cạnh tương ứng)
Xét \(\Delta ACD\) có: \(AD< AC+CD\)
\(\Rightarrow2AM< AC+AB\)
\(\Rightarrow AM< \frac{AB+AC}{2}\left(1\right)\)
Xét \(\Delta MAB\)có: \(AM>AB-BM\)
Xét \(\Delta MAC\)có: \(AM>AC-MC\)
\(\Rightarrow AM+AM>AB-BM+AC-MC\)
\(\Rightarrow2AM>AB+AC-\left(BM+CM\right)\)
\(\Rightarrow2AM>AB+AC-BC\)
\(\Rightarrow AM>\frac{AB+AC-BC}{2}\left(2\right)\)
Từ (1) và (2) => \(\frac{AB+AC-BC}{2}< AM< \frac{AB+AC}{2}\left(đpcm\right)\)
B1
Áp dụng định lý Pytago vào các tam giác vuông ta được:
PC^2=AP^2+AC^2
BN^2=AB^2+AN^2
BC^2=AB^2+AC^2
Theo tính chất tam giác vuông ta được:
AM=\(\dfrac{1}{2}\)BC=>AM^2=\(\dfrac{1}{4}\)BC^2
Từ trên =>AM^2+BN^2+CP^2=
\(\dfrac{1}{4}\)BC^2+AB^2+\(\dfrac{\left(AC\right)^2}{4}\)+AC^2+\(\dfrac{\left(AB\right)^2}{4}\)=\(\dfrac{2\left(BC\right)^2}{4}\)+BC^2=\(\dfrac{3}{2}\)BC^2(đpcm)
\(\dfrac{1}{4}\)
A B C P M N
Theo BĐT tam giác ta có:
AC-AB < BC < AC + AB
\(\Rightarrow\dfrac{AC-AB}{2}< \dfrac{BC}{2}< \dfrac{AC+AB}{2}\)
Vì M là trung điểm của BC nên BM = BC/2
\(\Rightarrow\dfrac{AC-AB}{2}< BM< \dfrac{AC+AB}{2}\)
trong tg vuông dg trung tuyen thuoc canh huyen = 1/2 canh huyen
( sach gk có cm)