K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2020

Ta có : \(\overrightarrow{n_{AH}}=\left(3;1\right)\Rightarrow\overrightarrow{u_{AH}}=\overrightarrow{n_{BC}}=\left(1;-3\right)\)

PTTQ BC đi qua điểm B và nhân \(\overrightarrow{n_{BC}}\) làm VTPT :

\(1\left(x-2\right)-3\left(y+7\right)=0\)

\(\Leftrightarrow x-3y-23=0\)

Gọi \(M\left(a;b\right)\) . Vì \(M\in CM\Rightarrow a+2b+7=0\Rightarrow b=\frac{-a-7}{2}\) . Do đó \(M\left(a;\frac{-a-7}{2}\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_A=2x_M-x_B=2a-2\\y_A=2y_M-y_B=-a\end{matrix}\right.\)

\(A\in AH\) \(\Rightarrow3\left(2a-2\right)-a+11=0\) \(\Leftrightarrow a=-1\)

\(\Rightarrow A\left(-4;1\right);M\left(-1;-3\right)\)

\(\overrightarrow{u_{AB}}=\left(6;-8\right)\Rightarrow\overrightarrow{n_{AB}}=\left(8;6\right)\)

PTTQ của AB : \(8\left(x-2\right)+6\left(y+7\right)=0\)

\(\Leftrightarrow4x+3y+13=0\)

\(C=CM\cap BC\Rightarrow C\left(5;-6\right)\)

\(\overrightarrow{u_{AC}}=\left(9;-7\right)\Rightarrow\overrightarrow{n_{AC}}=\left(7;9\right)\)

PTTQ của AC : \(7\left(x-5\right)+9\left(y+6\right)=0\)

\(\Leftrightarrow7x+9y+19=0\)

19 tháng 3 2020

Gọi $A\left( {{x}_{A}};{{y}_{A}} \right);C\left( {{x}_{C}};{{y}_{C}} \right)$

Phương trình đường cao qua $A:\left( d \right):3x+y+11=0$

$\overrightarrow{{{u}_{d}}}=\left( 3;1 \right)\Rightarrow \overrightarrow{AC}.\overrightarrow{u{{ & }_{d}}}=3\left( {{x}_{C}}-{{x}_{A}} \right)+1\left( {{y}_{C}}-{{y}_{A}} \right)=0$

Phương trình trung tuyến qua $C:\left( d' \right):x+2y+7=0$

$d\cap AB=M\left( \dfrac{2+{{x}_{A}}}{2};\dfrac{{{y}_{A}}-7}{2} \right)$

Ta có hệ phương trình: \(\left\{ \begin{array}{l} 3\left( {{x_C} - {x_A}} \right) + {y_C} - {y_A} = 0\\ 3{x_A} + {y_A} + 11 = 0\\ {x_C} + 2{y_C} + 7 = 0\\ \dfrac{{2 + {x_A}}}{2} + 2.\dfrac{{{y_A} - 7}}{2} + 7 = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {x_A} = - 4\\ {y_A} = 1\\ {x_C} = - 1\\ {y_C} = - 8 \end{array} \right.\)

\(\begin{array}{l} \Rightarrow A\left( { - 4;1} \right);C\left( { - 1; - 8} \right) \Rightarrow \overrightarrow {AB} = \left( {2; - 8} \right);\overrightarrow {AC} = \left( {3; - 9} \right);\overrightarrow {BC} = \left( { - 3; - 1} \right)\\ AB:2\left( {x + 4} \right) - 8\left( {y - 1} \right) = 0 \Rightarrow 2x - 8y + 16 = 0\\ AC:3\left( {x + 1} \right) - 9\left( {y + 8} \right) = 0 \Rightarrow 3x - 9y - 69 = 0\\ BC: - 3\left( {x + 1} \right) - 1\left( {y + 8} \right) = 0 \Rightarrow - 3x - y - 11 = 0 \end{array}\)

27 tháng 4 2020
https://i.imgur.com/Rai4f0H.jpg

AH: 2x+5y+3=0

=>BC: 5x-2y+c=0

Thay x=3 và y=5 vào BC, ta được:

c+15-10=0

=>c=-5

=>5x-2y-5=0

Tọa độ C là:

5x-2y-5=0 và x+y-5=0

=>5x-2y=5 và x+y=5

=>x=15/7 và y=20/7

=>C(15/7;20/7)

AH: 2x+5y+3=0

=>A(x;-2/5x-3/5)

CM: x+y-5=0

=>M(-y+5;y)

Theo đề, ta có: x+3=2(-y+5) và -2/5x-3/5+5=2y

=>x+3+2y=10 và -2/5x+17/5-2y=0

=>x+2y=7 và -2/5x-2y=-17/5

=>x=6 và y=1/2

=>A(6;-3); B(3;5); C(15/7;20/7)

vecto AB=(-3;8)

=>VTPT là (8;3)

=>Phương trình AB là:

8(x-3)+3(y-5)=0

=>8x-24+3y-15=0

=>8x+3y-39=0

A(6;-3); C(15/7;20/7)

vecto AC=(-20/7;41/7)

=>VTPT là (41/7;20/7)

Phương trình AC là:

41/7(x-6)+20/7(y+3)=0

=>41(x-6)+20(y+3)=0

=>41x-246+20y+60=0

=>41x+20y-186=0

NV
6 tháng 4 2021

Đường thẳng BC vuông góc AH nên nhận (1;-3) là 1 vtpt

Phương trình BC: \(1\left(x-2\right)-3\left(y+7\right)=0\Leftrightarrow x-3y-23=0\)

Do M thuộc CM nên tọa độ có dạng \(M\left(-2m-7;m\right)\)

M là trung điểm AB \(\Rightarrow A\left(-4m-16;2m+7\right)\)

Mà A thuộc AH nên:

\(3\left(-4m-16\right)+\left(2m+7\right)+11=0\Rightarrow m=-3\Rightarrow A\left(-4;1\right)\)

\(\Rightarrow\overrightarrow{AB}=\left(6;-8\right)\Rightarrow\) đường thẳng AB nhận (4;3) là 1 vtpt \(\Rightarrow\) pt AB là...

C là giao điểm BC và CM nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}x+2y+7=0\\x-3y-23=0\end{matrix}\right.\) \(\Rightarrow C\left(5;-6\right)\Rightarrow\overrightarrow{BC}=...\Rightarrow\) phương trình BC

NV
25 tháng 3 2021

Đường thẳng BC đi qua C và vuông góc AH nên nhận (2;-1) là 1 vtpt

Phương trình BC: 

\(2\left(x-0\right)-1\left(y+2\right)=0\Leftrightarrow2x-y-2=0\)

Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}2x-y-2=0\\-x+y=0\end{matrix}\right.\)  \(\Rightarrow B\left(2;2\right)\)

Phương trình đường thẳng d qua C và vuông góc BN có dạng:

\(1\left(x-0\right)+1\left(y+2\right)=0\Leftrightarrow x+y+2=0\)

Gọi D là giao điểm d và BN \(\Rightarrow\left\{{}\begin{matrix}x+y+2=0\\-x+y=0\end{matrix}\right.\) \(\Rightarrow D\left(-1;-1\right)\)

Gọi E là điểm đối xứng với C qua D \(\Rightarrow E\left(-2;0\right)\) đồng thời E thuộc AB

\(\Rightarrow\overrightarrow{EB}=\left(4;2\right)=2\left(2;1\right)\Rightarrow AB\) nhận (1;-2) là 1 vtpt

Phương trình AB: 

\(1\left(x-2\right)-2\left(y-2\right)=0\Leftrightarrow x-2y+2=0\)

A là giao điểm AH và AB nên: \(\left\{{}\begin{matrix}x+2y-1=0\\x-2y+2=0\end{matrix}\right.\)  \(\Rightarrow A\left(-\dfrac{1}{2};\dfrac{3}{4}\right)\)

21 tháng 3 2021

undefined

30. Viết pt tham số của đg thẳng đi qua 2 điểm A ( 3;-7) và B(1;-7) A. x =t ; y =-7 B. x=t ; y =7 C. x=t ; y = -7-t D. x = 3-7t; y = 1-7t 31. Trong mặt phẳng toạ độ Oxy , viết pt tổng quát của đg trung trực của đoạn thẳng AB với A(2;3) và B(-4;-1). A. 3x - 2y +5 =0 B. 3x - 2y -5=0 C. 3x +2y +1 =0 D. 3x +2y -1=0 32. Trong mặt phẳng toạ độ Oxy , viết pt tổng quát của đg thẳng đi qua giao điểm của d1 : 3x - 5y +2=0 và d2 :...
Đọc tiếp

30. Viết pt tham số của đg thẳng đi qua 2 điểm A ( 3;-7) và B(1;-7)

A. x =t ; y =-7

B. x=t ; y =7

C. x=t ; y = -7-t

D. x = 3-7t; y = 1-7t

31. Trong mặt phẳng toạ độ Oxy , viết pt tổng quát của đg trung trực của đoạn thẳng AB với A(2;3) và B(-4;-1).

A. 3x - 2y +5 =0

B. 3x - 2y -5=0

C. 3x +2y +1 =0

D. 3x +2y -1=0

32. Trong mặt phẳng toạ độ Oxy , viết pt tổng quát của đg thẳng đi qua giao điểm của d1 : 3x - 5y +2=0 và d2 : 5x -2y +4=0 đồng thời sống song với đg thẳng d3 : 2x - y +4=0

A. 2x - y + 30/19 =0

B. 2x -y - 30/19=0

C. x +2y + 30/19=0

D. x +2y - 30/19=0

33. Trong mặt phẳng toạ độ Oxy , cho tg ABC với A(-1;2), B(1;1) , C(2;-1) . Viết pt tổng quát đg cao AH của tg ABC.

A. AH : x -2y +3=0

B. AH: 2x +y =0

C. AH : x -2y +5=0

D. AH: 2x - y +4 =0

34. Cho tg ABC có toạ độ các đỉnh là A(-1;1) và B(4;7) , C( 3;-2), M là trung điểm của đoạn thẳng AB. Viêt pt tham số của đg thẳng CM.

A. x = 3+t ; y = -2-4t

B. x = 3+t ;y = -2 + 4t

C. x = 3-t ; y = 4+2t

D. x = 3+3t ; y = -2+4t

2
NV
11 tháng 4 2020

Câu 32:

Gọi M là giao điểm d1;d2 thì tọa độ M là nghiệm của hệ:

\(\left\{{}\begin{matrix}3x-5y+2=0\\5x-2y+4=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{16}{19};-\frac{2}{19}\right)\)

Do d song song d3 nên d nhận \(\left(2;-1\right)\) là 1 vtpt

Phương trình d:

\(2\left(x+\frac{16}{19}\right)-1\left(y+\frac{2}{19}\right)=0\Leftrightarrow2x-y+\frac{30}{19}=0\)

Câu 33:

\(\overrightarrow{BC}=\left(1;-2\right)\)

Do AH vuông góc BC nên AH nhận \(\left(1;-2\right)\) là 1 vtpt

Phương trình AH:

\(1\left(x+1\right)-2\left(y-2\right)=0\Leftrightarrow x-2y+5=0\)

Câu 34:

Tọa độ M là: \(M\left(\frac{3}{2};4\right)\)

\(\overrightarrow{CM}=\left(-\frac{3}{2};6\right)=-\frac{3}{2}\left(1;-4\right)\)

Phương trình tham số CM: \(\left\{{}\begin{matrix}x=3+t\\y=-2-4t\end{matrix}\right.\)

NV
11 tháng 4 2020

Câu 30:

\(\overrightarrow{AB}=\left(-2;0\right)=-2\left(1;0\right)\) nên đường thẳng AB nhận \(\left(1;0\right)\) là 1 vtcp

Phương trình AB: \(\left\{{}\begin{matrix}x=1+t\\y=-7\end{matrix}\right.\)

Cả 4 đáp án đều ko chính xác

Câu 31:

Gọi M là trung điểm AB \(\Rightarrow M\left(-1;1\right)\)

\(\overrightarrow{AB}=\left(-6;-4\right)=-2\left(3;2\right)\Rightarrow\) đường trung trực AB nhận \(\left(3;2\right)\) là 1vtpt

Phương trình:

\(3\left(x+1\right)+2\left(y-1\right)=0\Leftrightarrow3x+2y+1=0\)