K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Bài 2:

a) Ta thấy:

$6^2+4,5^2=7,5^2\Leftrightarrow AB^2+AC^2=BC^2$

Theo định lý Pitago đảo ta suy ra $ABC$ là tam giác vuông tại $A$

b) 

$S_{ABC}=\frac{AB.AC}{2}=\frac{AH.BC}{2}$

$\Rightarrow AH=\frac{AB.AC}{BC}=\frac{6.4,5}{7,5}=3,6$ (cm) 

$\sin B=\frac{AC}{BC}=\frac{4,5}{7,5}\Rightarrow \widehat{B}\approx 36,8^0$

$\Rightarrow \widehat{C}\approx 90^0-36,78^0=53,2^0$

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Hình 2:

undefined

5 tháng 7 2021

a) Ta có: \(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6\left(cm\right)\)

Ta có: \(AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8\)

Ta có: \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)

\(\Delta AHB\) vuông tại H có đường cao HD \(\Rightarrow AD.AB=AH^2\)

\(\Delta AHC\) vuông tại H có đường cao HE \(\Rightarrow AE.AC=AH^2\) 

\(\Rightarrow AD.AB=AE.AC\Rightarrow\dfrac{AD}{AE}=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}\)

b) Vì \(\angle HDA=\angle HEA=\angle DAE=90\Rightarrow DAEH\) là hình chữ nhật

\(\Rightarrow DE=AH\)

Ta có: \(BC.sinB.cosB=BC.\dfrac{AC}{BC}.\dfrac{AB}{BC}=\dfrac{AB.AC}{BC}=\dfrac{AH.BC}{BC}=AH\)

\(\Rightarrow BC.sinB.cosB=DE\)

 

 

1.Từ điểm A ở ngoài đtròn (O) vẽ 2 tiếp tuyến AB và AC với đường tròn(O). Gọi M là trung điểm AB. Nối CM cắt đường tròn(O) tại E. AO cắt BC tại H. Tia AE cắt đường tròn (O) tại Da. Chứng Minh MB bình=ME.MC và CD//ABb. Vẽ OK vuông góc với ED tại K. Vẽ dây cung EN vuông góc với CK (N thuộc (O)). Cm B,O,N thẳng hàng2.Cho điểm M nằm ngoài đtròn (O). Vẽ 2 tiếp tuyến MA,MB...
Đọc tiếp

1.Từ điểm A ở ngoài đtròn (O) vẽ 2 tiếp tuyến AB và AC với đường tròn(O). Gọi M là trung điểm AB. Nối CM cắt đường tròn(O) tại E. AO cắt BC tại H. Tia AE cắt đường tròn (O) tại D
a. Chứng Minh MB bình=ME.MC và CD//AB
b. Vẽ OK vuông góc với ED tại K. Vẽ dây cung EN vuông góc với CK (N thuộc (O)). Cm B,O,N thẳng hàng
2.Cho điểm M nằm ngoài đtròn (O). Vẽ 2 tiếp tuyến MA,MB với đtròn. Vẽ cát tuyến MCD không đi qua tâm O (C nằm giữa M và D), OM cắt AB và (O) lần lượt tại H và I.
a. Cm tg MAOB nội tiếp
b. Cm OH.OM+MC.MD=MO bình
c. Cm CI là tia pg của góc MCH
3. Từ điểm M nằm ngoài (O;R), vẽ 2 tiếp tuyến MA,MB và cát tuyến MCD với (O) (A,B là tiếp điểm và cát tuyến MCD nằm trong góc AMO, MC<MD). Gọi H là giao điểm của AB và OM
a) Cm tg MAOB nội tiếp, OM vuông góc AB
b) Cm AC.BD=AD.BC

0