Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=x^6-10x^5+10x^4-10x^3+10x^2-10x+10\)
\(f\left(x\right)=x^5\left(x-10\right)+x^3\left(x-10\right)+x\left(x-10\right)+10\)
\(f\left(x\right)=\left(x-10\right)\left(x^5+x^3+x\right)+10\)
\(f\left(x\right)=x\left(x-10\right)\left(x^4+x^2+1\right)+10\)
\(\Rightarrow f\left(9\right)=9.\left(9-10\right)\left(9^4+9^2+1\right)+10\)
\(\Leftrightarrow f\left(9\right)=9.\left(-1\right).\left(6643\right)+10\)
\(\Leftrightarrow f\left(9\right)=-59777\)
P/s : làm cho zui thôi nha , sai đừng đáp đá
\(x=9\)\(\Rightarrow x+1=10\)
\(\Rightarrow f\left(9\right)=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+\left(x+1\right)\)
\(=x^6-x^6-x^5+x^5+.......-x+x+1=1\)
Ta thấy x=9 => x+1=10. Thay 10 = x+1 vào biểu thức rồi tính
Như bạn Y Hoa Nhược Yến nói , ta có :
Q(x) = x14 - (x + 1).x13 + (x + 1)x12 - (x + 1)x11 + ..... + (x + 1)x2 - (x + 1)x + 10
Q(x) = x14 - x14 - x13 + x13 + x12 - x12 - x11 + ..... + x3 + x2 - x2 - x + 10
Q(x) = -x + 10
Q(9) = -9 + 10 = 11
C = x14 - 10x13 + 10x13 -10x11 + ... + 10x12 -10x + 10
= x14 - ( x + 1 )x13 + ( x + 1)x12 -... - ( x + 1)x + 10 + 1
=x14 -x14 - x13 + x13 + x12 - ...- x2 - x + 10 + 1
= 1
Không chắc lắm
D = \(x^{10}-25x^9+25x^8-25x^7+...+25x^2-25x+25\)với x = 24
thiếu 1 câu
A= x5−5x4+5x3−5x2+5x−1x5−5x4+5x3−5x2+5x−1 với x = 4
= x5−(x+1)x4+(x+1)x3−(x+1)x2+(x+1)x−1
= x5−x5−x4+x4+x3−x3+x2−x2+x−1
=x−1=4−1=3
Tương tự với các câu B,C,D
a, Ta có: f(x)= x2-10x+27 = (x-5)2+2>0
=> pt vô nghiệm
b, g(x)=x2+(2/3)x+4/9=x2+2.(1/3).x+1/9+1/3
= (x+1/3)2+1/3>0
=> pt vô nghiệm.
\(a,f\left(x\right)=x^2-10x+27\)
\(\Rightarrow f\left(x\right)=x^2-5x-5x+25+2\)
\(\Rightarrow f\left(x\right)=x\left(x-5\right)-5\left(x-5\right)+2\)
\(\Rightarrow f\left(x\right)=\left(x-5\right)^2+2\ge2>0\) (Vì \(\left(x-5\right)^2\ge0\) \(Vx\) )
Vậy đa thức f(x) vô nghiệm
\(b,g\left(x\right)=x^2+\frac{2}{3}x+\frac{4}{9}\)
\(\Rightarrow g\left(x\right)=x^2+\frac{1}{3}x+\frac{1}{3}x+\frac{1}{9}+\frac{3}{9}\)
\(\Rightarrow g\left(x\right)=x\left(x+\frac{1}{3}\right)+\frac{1}{3}\left(x+\frac{1}{3}\right)+\frac{1}{3}\)
\(\Rightarrow g\left(x\right)=\left(x+\frac{1}{3}\right)^2+\frac{1}{3}\ge\frac{1}{3}>0\) (Vì \(\left(x+\frac{1}{3}\right)^2\ge0\) \(Vx\) )
Vậy đa thức g(x) vô nghiệm
a)\(4x^2-7x-2=0\Leftrightarrow4x^2+x-8x-2=0\Leftrightarrow x\left(4x+1\right)-2\left(4x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x+1\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\4x+1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-\frac{1}{4}\end{array}\right.\)
b)\(3x^2+10x+3=0\Leftrightarrow3x^2+9x+x+3=0\Leftrightarrow3x\left(x+3\right)+\left(x+3\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(x+3\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}3x+1=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{3}\\x=-3\end{array}\right.\)
c)\(x^2-x-20=0\Leftrightarrow x^2+4x-5x-20=0\Leftrightarrow x\left(x+4\right)-5\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+4\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x-5=0\\x+4=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=5\\x=-4\end{array}\right.\)
d)\(6x^2+7x-3=0\Leftrightarrow6x^2-2x+9x-3=0\Leftrightarrow2x\left(3x-1\right)+3\left(3x-1\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(3x-1\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+3=0\\3x-1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{3}{2}\\x=\frac{1}{3}\end{array}\right.\)
e)\(10x^2-14x-12=0\Leftrightarrow2\left(5x^2-7x-6\right)=0\Leftrightarrow5x^2-7x-6=0\)
\(\Leftrightarrow5x^2+3x-10x-6=0\Leftrightarrow x\left(5x+3\right)-2\left(5x+3\right)=0\Leftrightarrow\left(x-2\right)\left(5x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\5x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-\frac{3}{5}\end{array}\right.\)
ơ?! Nãy em đã nháp r nhưng ra x = -1 ko phải là nghiệm của P(x) nên em bỏ :)) hình như đề bài của chị khác vs đề bài của bạn ý :> A(x) lm j có x² đâu ạ?
Lời giải:
\(f(x)=x^{20}-9x^{19}-(x^{19}-9x^{18})+(x^{18}-9x^{17})-....+(x^2-9x)-x+1\)
\(=x^{19}(x-9)-x^{18}(x-9)+x^{17}(x-9)-....+x(x-9)-x+1\)
\(\Rightarrow f(9)=0-0+0-...+0-9+1=-8\)