Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thu gọn và sắp xếp:
M(x) = 2x4 – x4 + 5x3 – x3 – 4x3 + 3x2 – x2 + 1
= x4 + 2x2 +1
b)M(1) = 14 + 2.12 + 1 = 4
M(–1) = (–1)4 + 2(–1)2 + 1 = 4
Ta có M(x)=\(x^4+2x^2+1\)
Vì \(x^4\)và \(2x^2\)luôn lớn hơn hoặc bằng 0 với mọi x
Nên \(x^4+2x^2+1>0\)
Tức là M(x)\(\ne0\) với mọi x
Vậy đa thức trên không có nghiệm.
a) Sắp xếp các hạng tử của đa thức M(x) theo lũy thừa giảm của biến
M(x)=2x4−x4+5x3−x3−4x3+3x2−x2+1M(x)=2x4−x4+5x3−x3−4x3+3x2−x2+1
=x4+2x2+1=x4+2x2+1
b) M(1)=14+2.12+1=4M(1)=14+2.12+1=4
M(−1)=(−1)4+2.(−1)2+1=4M(−1)=(−1)4+2.(−1)2+1=4
c) Ta có: M(x)=x4+2x2+1M(x)=x4+2x2+1
Vì giá trị của x4 và 2x2 luôn lớn hơn hay bằng 0 với mọi x nên x4 +2x2 +1 > 0 với mọi x tức là M(x) ≠ 0 với mọi x. Vậy M(x) không có nghiệm.
Bài 2:
\(M\left(3\right)=3^2-4\cdot3+3=0\)
=>x=3 là nghiệm của M(x)
\(M\left(-1\right)=\left(-1\right)^2-4\cdot\left(-1\right)+3=1+3+4=8\)
=>x=-1 không là nghiệm của M(x)
Ta có: M(x)=x4+2x2+1
1. Thay x=1 vào M(x) ta được: M(1)=1+2.1+1=4
Thay x=-1 vào M(x) ta được: M(-1)=(-1)2+2.(-1)2+1=4
2. Đặt t=x2 (t\(\ge\)0)
Ta được: M(t)=t2+2t+1=(t+1)2=0
\(\Leftrightarrow t=-1\) (KTM)
\(\Rightarrow\) M(x) vô nghiệm (dpcm)
Bạn tham khảo nha, không hiểu thì cứ hỏi mình nha
Bài 1:
a) \(x^2+7x-8=x^2+2.x.\frac{7}{2}+\frac{49}{4}-\frac{81}{4}\)
\(=\left(x+\frac{7}{2}\right)^2-\frac{81}{4}=0\)
\(\Rightarrow\left(x+\frac{7}{2}\right)^2=\frac{81}{4}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{7}{2}=\frac{9}{2}\\x+\frac{7}{2}=\frac{-9}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-8\end{cases}}\)
Vậy nghiệm của đa thức m(x) là 1 hoặc -8
b) \(\left(x-3\right)\left(16-4x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\16-4x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
Vậy nghiệm của đa thức g(x) là 3 hoặc 4
c) \(5x^2+9x+4=0\)
\(\Rightarrow x^2+\frac{9}{5}x+\frac{4}{5}=0\)
\(\Rightarrow x^2+2x.\frac{9}{10}+\frac{81}{100}-\frac{1}{100}=0\)
\(\Rightarrow\left(x+\frac{9}{10}\right)^2-\frac{1}{100}=0\)
\(\Rightarrow\left(x+\frac{9}{10}\right)^2=\frac{1}{100}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{9}{10}=\frac{1}{10}\\x+\frac{9}{10}=\frac{-1}{10}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-4}{5}\\x=-1\end{cases}}\)
Vậy...
\(x^4+\left(\sqrt{\frac{11}{2}}.x\right)^2+2.\sqrt{\frac{11}{2}}.x.\sqrt{\frac{8}{11}}+\frac{8}{11}+5\frac{3}{11}>0\)
a)P(x)=\(x^5-3x^2+7x^4-9x^3+x^2-\dfrac{1}{4}x\)
=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
Q(x)=\(5x^4-x^5+x^2-2x^3+3x^2-\dfrac{1}{4}\)
=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
b) P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
+ Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
__________________________________
P(x)+Q(x)= \(12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)
P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
- Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
_________________________________________
P(x)-Q(x)=\(2x^5+2x^4-7x^3-6x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)
c)Thay x=0 vào đa thức P(x), ta có:
P(x)=\(0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\dfrac{1}{4}\cdot0\)
=0+0-0-0-0
=0
Vậy x=0 là nghiệm của đa thức P(x).
Thay x=0 vào đa thức Q(x), ta có:
Q(x)=\(-0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\dfrac{1}{4}\)
=0+0-0+0-\(\dfrac{1}{4}\)
=0-\(\dfrac{1}{4}\)
=\(\dfrac{-1}{4}\)
Vậy x=0 không phải là nghiệm của đa thức Q(x).
a) Sắp xếp theo lũy thừa giảm dần
P(x)=x5−3x2+7x4−9x3+x2−14xP(x)=x5−3x2+7x4−9x3+x2−14x
=x5+7x4−9x3−2x2−14x=x5+7x4−9x3−2x2−14x
Q(x)=5x4−x5+x2−2x3+3x2−14Q(x)=5x4−x5+x2−2x3+3x2−14
=−x5+5x4−2x3+4x2−14=−x5+5x4−2x3+4x2−14
b) P(x) + Q(x) = (x5+7x4−9x3−2x2−1
a)M(x)=x2+5x+4=0
x2+x+4x+4=0
(x2+x)+(4x+4)=0
x(x+1)+4(x+1)=0
(x+1)(x+4)=0
=>x+1=0 hoặc x+4=0
x=-1 hoặc x =-4
Vậy nghiệm của đa thức M(x) là x=-1;-4
b)ta có M(x)+4=x2+5x+4+4=x2+5x+8
=x2+\(\frac{5}{2}.x+\frac{5}{2}.x+\frac{25}{4}+\frac{7}{4}\)
=(x2+\(\frac{5}{2}.x\))+(\(\frac{5}{2}.x+\frac{25}{4}\))+\(\frac{7}{4}\)
=x(x+\(\frac{5}{2}\))+\(\frac{5}{2}\)(x+\(\frac{5}{2}\))+\(\frac{7}{4}\)
=(x+\(\frac{5}{2}\))(x+\(\frac{5}{2}\))+\(\frac{7}{4}\)
=(x+\(\frac{5}{2}\))2+\(\frac{7}{4}\)
=>M(x)+4=0 thì (x+\(\frac{5}{2}\))2+\(\frac{7}{4}\)=0
(x+\(\frac{5}{2}\))2=\(\frac{-7}{4}\)(vô lí )
Vậy M(x)+4 không có nghiệm
a) M (x) = 0 <=> x2 + 5x + 4 = 0
<=> (x2 + 4x) + (x + 4) = 0
<=> x.(x + 4) + (x + 4) = 0
<=> (x+ 4).(x + 1) = 0
<=> x + 4 = 0 hoặc x + 1 = 0
<=> x = - 4 hoặc x = -1
Vậy nghiệm của M (x) là -4; -1
b) M(x) + 4 = x2 + 5x + 4 + 4 = x2 + 5x + 8
= x2 + \(\frac{5}{2}\).x + \(\frac{5}{2}\).x + 8= (x2 + \(\frac{5}{2}\).x) +( \(\frac{5}{2}\).x + \(\frac{25}{4}\)) - \(\frac{25}{4}\) + 8
= x.(x + \(\frac{5}{2}\) ) + \(\frac{5}{2}\).(x + \(\frac{5}{2}\)) + \(\frac{7}{4}\) = (x + \(\frac{5}{2}\) ).(x + \(\frac{5}{2}\) ) + \(\frac{7}{4}\) = (x + \(\frac{5}{2}\) )2 + \(\frac{7}{4}\) \(\ge\) 0 + \(\frac{7}{4}\) > 0 với mọi x
Vậy M(x) + 4 không có nghiệm