K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2018

Ta có : \(P\left(13\right)=\left(a+2015\right).13^3+\left(b+2016\right).13+2017=14\)

<=> \(\left(a+2015\right).13^3+\left(b+2016\right).13=14-2017=-2003\)

Mặt khác ta có : \(P\left(-13\right)=\left(a+2015\right).\left(-13\right)^3+\left(b+2016\right).\left(-13\right)+2017\)

=> \(P\left(-13\right)=-\left[\left(a+2015\right).13^3+\left(b+2016\right).13\right]+2017=-\left(-2003\right)+2017=4020\)

30 tháng 1 2021

thay x=1 vào A(x)= (3-4x+x2 )2016 . (3+4x+x2)2017 là ra nha

1 tháng 1 2017

thế này mà ko biết lM

1 tháng 1 2017

thay x=1 vào biểu thức và tính chính xác số đó là tổng đó

6 tháng 6 2017

b/ Theo đề bài thì ta có:

\(\left\{{}\begin{matrix}f\left(1\right)=f\left(-1\right)\\f\left(2\right)=f\left(-2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a_4+a_3+a_2+a_1+a_0=a_4-a_3+a_2-a_1+a_0\\16a_4+8a_3+4a_2+2a_1+a_0=16a_4-8a_3+4a_2-2a_1+a_0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a_3+a_1=0\\4a_3+a_1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a_3=0\\a_1=0\end{matrix}\right.\)

Ta có: \(f\left(x\right)-f\left(-x\right)=a_4x^4+a_3x^3+a_2x^2+a_1x+a_0-\left(a_4x^4-a_3x^3+a_2x^2-a_1x+a_0\right)\)

\(=2a_3x^3+2a_1x=0\)

Vậy \(f\left(x\right)=f\left(-x\right)\)với mọi x

6 tháng 6 2017

a/ Áp dụng tính chất dãy tỷ số bằng nhau ta có:

\(\dfrac{a}{2015}=\dfrac{b}{2016}=\dfrac{c}{2017}=\dfrac{a-b}{-1}=\dfrac{b-c}{-1}=\dfrac{c-a}{2}\)

\(\Rightarrow c-a=-2\left(a-b\right)=-2\left(b-c\right)\)

Thế vào B ta được

\(B=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)

\(=4\left(a-b\right)\left(b-c\right)-\left[-2\left(a-b\right).\left(-2\right).\left(b-c\right)\right]\)

\(=4\left(a-b\right)\left(b-c\right)-4\left(a-b\right)\left(b-c\right)=0\)

24 tháng 1 2020

Câu hỏi của Nguyễn Minh Vũ - Toán lớp 7 - Học toán với OnlineMath

Bạn tham khảo ở link trên.

9 tháng 5 2017

Vì x=14 nên x+1=15

Thay 15=x+1 vào A(x) ta có:

A(x)= x15-(x+1)x14+(x+1)x13-(x+1)x12+...+(x+1)x3-(x+1)x2+(x+1)x-15

= x15-x15-x14+x14+x13-x13-x12+...+x4+x3-x3-x2+x2-x-15

= x-15

=> A(14) = 14-15=-1

Vậy A(14) = -1

9 tháng 5 2017

b.* Với x=0 ta có:

0.f(-4)=-2.f(0)

=> 0=-2.f(0) => f(0)=0

=> đa thức f(x) có 1 nghiệm là 0 (1)

* với x=2 ta có: 2.f(-2)=0.f(2)

=> 2.f(2)=0 => f(2)=0

=> 2 là nghiệm của đa thức f(x) (2)

Từ (1) và (2) => đa thức f(x) có ít nhất 2 nghiệm