Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ta có :
\(F\left(x\right)=\left(x-1\right)\cdot Q\left(x\right)-4\) (1)
\(F\left(x\right)=\left(x+2\right)\cdot R\left(x\right)+5\) (2)
Thay \(x=1\) vào (1) ta có :
\(F\left(1\right)=-4\)
\(\Leftrightarrow1+a+b+c=-4\)
\(\Leftrightarrow a+b+c=-5\)
Thay \(x=-2\) vào (2) ta có :
\(F\left(-2\right)=5\)
\(\Leftrightarrow-8+4a-2b+c=5\)
\(\Leftrightarrow4a-2b+c=13\)
Do đó ta có : \(\hept{\begin{cases}a+b+c=-4\\4a-2b+c=13\end{cases}}\)
....
Nguyễn Lê Phước Thịnh White Hold HangBich2001 Phạm Vũ Trí Dũng Nguyễn Huyền Trâm
Cho đa thức \(f\left(x\right)\)bậc 3 với hệ số \(x^3\)là số nguyên dương thỏa mãn:
\(f\left(2019\right)=2020;f\left(2020\right)=2021\)
CMR \(f\left(2021\right)-f\left(2018\right)\)là hợp số
f(-7)=7
=>a*(-7)^2021+b*(-7)^2019+c*(-7)-5=7
=>a*7^2021+b*7^2019+c*7+5=-7
=>f(7)+10=-7
=>f(7)=-17
\(f\left(-1\right)=-4\Rightarrow-1+a-b+c=-4\)
\(\Rightarrow a-b+c=-3\)
\(f\left(2\right)=5\Rightarrow8+4a+2b+c=5\Rightarrow4a+2b+c=-3\)
\(\Rightarrow3a+3b=0\Rightarrow a=-b\)
\(\Rightarrow a^{2019}=-b^{2019}\Rightarrow a^{2019}+b^{2019}=0\)
\(\Rightarrow A=0\)
\(f\left(x\right)=x^{2018}\left(x^2-2x-1\right)+5\left(x^2-2x-1\right)+8\)
Với \(x=1-\sqrt{2}\) ta có:
\(x^2-2x-1=\left(1-\sqrt{2}\right)^2-2\left(1-\sqrt{2}\right)-1\)
\(=3-2\sqrt{2}-2+2\sqrt{2}-1=0\)
\(\Rightarrow f\left(1-\sqrt{2}\right)=\left(1-\sqrt{2}\right)^{2018}.0+5.0+3=3\)
Ta có :
\(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\hept{\begin{cases}f\left(1\right)=a.1^2+b.1+c\\f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}f\left(1\right)=a+b+c\\f\left(-1\right)=a-b+c\end{cases}}\)
mà \(f\left(1\right)=f\left(-1\right)\Rightarrow a+b+c=a-b+c\)
\(\Rightarrow b=-b\)
Đến bước này em không biết vì em học lớp 7
Từ \(b=-b\Rightarrow2b=0\Rightarrow b=0\)
\(\Rightarrow a+c=0\left(f\left(1\right)=0,b=0\right)\)
\(\Rightarrow a=-c\)
Thay \(b=0,a=-c\)vào biểu thức M ta được:
\(M=\left(-c\right)^{2019}+0^{2019}+c^{2019}+2018\)
\(=-c^{2019}+0+c^{2019}+2018\)
\(=\left(-c^{2019}+c^{2019}\right)+2018\)
\(=0+2018=2018\)
Vậy giá trị biểu thức M là \(2018\)