\(ax^2+bx+c\) (với a,b,c ∈ R). Biết f(0), f(1), f(2) có giá trị nguyên...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2018

) f(0) = c; f(0) nguyên => c nguyên     (*)
f(1) = a+ b + c ; f(1) nguyên => a+ b + c nguyên     (**)
f(2) = 4a + 2b + c ; f(2) nguyên => 4a + 2b + c nguyên    (***)
Từ (*)(**)(***) => a + b và 4a + 2b nguyên
4a + 2b = 2a + 2.(a + b) có giá trị  nguyên  mà 2(a+ b) nguyên do a+ b nguyên
nên 2a nguyên => 4a có giá trị nguyên mà 4a + 2b nguyên do đó 2b có giá trị nguyên

:3

25 tháng 3 2018

Có \(f\left(0\right);f\left(1\right);f\left(2\right)\)\(\in Z\Rightarrow\hept{\begin{cases}f\left(0\right)=c\in Z\\f\left(1\right)=a+b+c\in z\\f\left(2\right)=4a+2b+c\in z\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a+b\in z\\4a+2b\in z\end{cases}\Rightarrow\hept{\begin{cases}2a+2b\in z\\4a+2b\in z\end{cases}}\Rightarrow2a\in z;}2b\in z\)

\(\RightarrowĐPCM\)

2 tháng 3 2021

Có f(0) = c

Mà f(0) nguyên => c nguyên

f(1) = a+b+c

=> a+b = f(1) - c

Mà f(1) nguyên, c nguyên

=> a+b nguyên

f(2) = 4a+2b+c

=> 4a+2b = f(2)-c (*)

=> 2a= f(2) - c - 2(a+b)

Mà f(20, c, a+b nguyên => 2a nguyên

Từ (*) => 2b = f(2) -c -4a

Mà f(2), c, a nguyên => 2b nguyên

22 tháng 2 2019

Ta có:

\(f\left(0\right)=c\in Z\)(1)

\(f\left(1\right)=a+b+c\in Z\)(2)

\(f\left(2\right)=4a+2b+c\in Z\)(3)_

Từ (1), (2) => \(a+b\in Z\)=> \(2a+2b\in Z\)(4)

Từ (1), (3)=> 4a+2b\(\in Z\)(5)

Từ (4), (5) => \(\left(4a+2b\right)-\left(2a+2b\right)\in Z\)

=> \(2a\in Z\)=> \(2b\in Z\)

30 tháng 5 2020

\(f\left(0\right)=a.0^2+b.0+c=c\) có giá trị nguyên 

\(f\left(1\right)=a+b+c\) có giá trị nguyên => a + b có giá trị nguyên 

\(f\left(2\right)=4a+2b+c=2a+2\left(a+b\right)+c\)=> 2a có giá trị nguyên 

=> 4a có giá trị nguyên 

=> 2b có giá trị nguyên.

14 tháng 5 2017

Với \(x=0\Rightarrow f\left(x\right)=f\left(0\right)=c⋮7\left(1\right)\)

Với \(x=1\Rightarrow f\left(x\right)=f\left(1\right)=a+b+c⋮7\left(2\right)\)

Với \(x=-1\Rightarrow f\left(x\right)=f\left(-1\right)=a-b+c⋮7\left(3\right)\)

Từ \(\left(2\right)\left(3\right)\Rightarrow f\left(1\right)-f\left(-1\right)=a+b+c-a+b-c⋮7\)

\(\Rightarrow2b⋮7\Rightarrow b⋮7\)

\(a+b+c⋮7\)\(b⋮7;c⋮7\Rightarrow a⋮7\)

Vậy \(a,b,c⋮7\)

6 tháng 4 2017

Ta có f(0)=a.02+b.0+c=c

=> c là số nguyên

f(1)=a.12+b.1+c=a+b+c=(a+b)+c

Vì c là số nguyên nên a+b là số nguyên (1)

f(2)=a.22+b.2+c=2(2a+b)+c

=>2.(2a+b) là số nguyên

=> 2a+b là số nguyên (2)

Từ (1) và (2) =>(2a+b)-(a+b) là số nguyên  =>a là số nguyên  => b cũng là số nguyên

Vậy f(x) luôn nhân giá trị nguyên với mọi x

6 tháng 4 2017

Ta có f(0)=a.0\(^2\)+b.0+c=c=>c là số nguyên

f(1)=a.1\(^{^2}\)+b.1+c=a+b+c

Vì c là số nguyên=>a+b là số nguyên(1)

f(2)=a.2\(^2\)+b.2+c=2.(2a+b)+c=>2.(2a+b)là số nguyên=>2a+b là số nguyên(2)

Từ (1)và(2)=>(2a+b)-(a+b)=2a+b-a-b=a là số nguyên=>a là số nguyên

Do a+b là số nguyên, mà a là số nguyên

=>b là số nguyên

Vậy f(x) luôn nhận giá trị nguyên với mọi x

20 tháng 3 2017

f(0) = c  là số nguyên

f(1) = a + b + c là số nguyên => a + b là số nguyên

f(2) = 4a + 2b + c = 2(a+b) + 2a +c là số nguyên => 2a là số nguyên