\(ax^2+bx+c\) có a, b,c là số nguyên và \(a\ne0\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2017

Với \(x=0\Rightarrow f\left(x\right)=f\left(0\right)=c⋮7\left(1\right)\)

Với \(x=1\Rightarrow f\left(x\right)=f\left(1\right)=a+b+c⋮7\left(2\right)\)

Với \(x=-1\Rightarrow f\left(x\right)=f\left(-1\right)=a-b+c⋮7\left(3\right)\)

Từ \(\left(2\right)\left(3\right)\Rightarrow f\left(1\right)-f\left(-1\right)=a+b+c-a+b-c⋮7\)

\(\Rightarrow2b⋮7\Rightarrow b⋮7\)

\(a+b+c⋮7\)\(b⋮7;c⋮7\Rightarrow a⋮7\)

Vậy \(a,b,c⋮7\)

21 tháng 3 2015

Để ​(ax3 + bx2 + cx + d) chia hết cho 5 thì 

axchia hết cho 5 

và bx2 chia hết cho 5 

và cx chia hết cho 5 

và axchia hết cho 5 (dùng ngoặc và) 

=> a,b,c,d đề phải chia hết cho 5


theo tôi là vậy

22 tháng 3 2015

ta có: x là số nguyên và x chia hết cho 5 ( trong toán học bạn phải viết kí hiệu của chia hết ra nhang)

=> ax^3 chia hết cho 5

bx^2 chia hết cho 5

cx chia hết cho 5

d chia hết cho 5

=>a,b,c,d đều chia hết cho 5

 

26 tháng 3 2016

Làm đồng dư được ko ?

26 tháng 3 2016

Các bạn trả lời hộ mình đi , mình cần gấp lắm

24 tháng 7 2017

Sửa đề: \(f\left(x\right)=ax^2+bx+c\)

Vì với mọi giá trị nguyên của x thì f(x) \(⋮7\) nên ta có:

+) \(f\left(0\right)⋮7\Rightarrow a.0^2+b.0+c⋮7\Rightarrow c⋮7\)

+) \(f\left(1\right)⋮7\Rightarrow a.1^2+b.1+c⋮7\Rightarrow a+b⋮7\) (do \(c⋮7\)) (1)

+) \(f\left(-1\right)⋮7\Rightarrow a.\left(-1\right)^2+b.\left(-1\right)+c⋮7\Rightarrow a-b⋮7\) (do \(c⋮7\)) (2)

Từ (1) và (2) \(\Rightarrow a+b+a-b⋮7\Rightarrow2a⋮7\Rightarrow a⋮7\). Mà \(a+b⋮7\Rightarrow b⋮7\)

Vậy \(a,b,c⋮7\)