Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để (ax3 + bx2 + cx + d) chia hết cho 5 thì
ax3 chia hết cho 5
và bx2 chia hết cho 5
và cx chia hết cho 5
và ax3 chia hết cho 5 (dùng ngoặc và)
=> a,b,c,d đề phải chia hết cho 5
theo tôi là vậy
ta có: x là số nguyên và x chia hết cho 5 ( trong toán học bạn phải viết kí hiệu của chia hết ra nhang)
=> ax^3 chia hết cho 5
bx^2 chia hết cho 5
cx chia hết cho 5
d chia hết cho 5
=>a,b,c,d đều chia hết cho 5
Sửa đề: \(f\left(x\right)=ax^2+bx+c\)
Vì với mọi giá trị nguyên của x thì f(x) \(⋮7\) nên ta có:
+) \(f\left(0\right)⋮7\Rightarrow a.0^2+b.0+c⋮7\Rightarrow c⋮7\)
+) \(f\left(1\right)⋮7\Rightarrow a.1^2+b.1+c⋮7\Rightarrow a+b⋮7\) (do \(c⋮7\)) (1)
+) \(f\left(-1\right)⋮7\Rightarrow a.\left(-1\right)^2+b.\left(-1\right)+c⋮7\Rightarrow a-b⋮7\) (do \(c⋮7\)) (2)
Từ (1) và (2) \(\Rightarrow a+b+a-b⋮7\Rightarrow2a⋮7\Rightarrow a⋮7\). Mà \(a+b⋮7\Rightarrow b⋮7\)
Vậy \(a,b,c⋮7\)
Với \(x=0\Rightarrow f\left(x\right)=f\left(0\right)=c⋮7\left(1\right)\)
Với \(x=1\Rightarrow f\left(x\right)=f\left(1\right)=a+b+c⋮7\left(2\right)\)
Với \(x=-1\Rightarrow f\left(x\right)=f\left(-1\right)=a-b+c⋮7\left(3\right)\)
Từ \(\left(2\right)\left(3\right)\Rightarrow f\left(1\right)-f\left(-1\right)=a+b+c-a+b-c⋮7\)
\(\Rightarrow2b⋮7\Rightarrow b⋮7\)
Vì \(a+b+c⋮7\) mà \(b⋮7;c⋮7\Rightarrow a⋮7\)
Vậy \(a,b,c⋮7\)