Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x2 - 5x + 3
= 2x2 - 2x - 3x + 3
= 2x( x - 1 ) - 3( x - 1 )
= ( x - 1 )( 2x - 3 )
= ( x + 1 - 2 )[ 2( x + 1 ) - 5 ] (*)
Đặt y = x + 1
(*) trở thành
( y - 2 )( 2y - 5 )
= 2y2 - 5y - 4y + 10
= 2y2 - 9y + 10
\(y^2\left(1+y\right)+\left(y+1\right)+1\)
\(\Leftrightarrow\left(y+1\right)\left(y^2+1\right)+1\)
vay \(\left(y^2+y^3+2+y\right)\div\left(y^2+1\right)\)dư 1
\(\)
Bài 1 : \(\left(y+a\right)^3=y^3+3y^2a+3ya^2+a^3\)
Bài 2:
1. \(x^2-2x+1=\left(x-1\right)^2\)
2. \(x^2+2x+1=\left(x+1\right)^2\)
3. \(x^2-6x+9=\left(x-3\right)^2\)
4. \(x^2-10x+25=\left(x-5\right)^2\)
5. \(x^2+14x+49=\left(x+7\right)^2\)
6. \(x^2-22x+121=\left(x-11\right)^2\)
7. \(4x^2-4x+1=\left(2x-1\right)^2\)
8. \(x^2-4x+4=\left(x-2\right)^2\)
9. \(x^2-2xy+y^2=\left(x-y\right)^2\)
10. \(4x^2-4xy+y^2=\left(2x-y\right)^2\)
Bài 1 :
\(\left(y+a\right)^3=y^3+3y^2a+3ya^2+a^3\)
Bài 2 : mk lm tiếp phần còn lại thôi, mấy câu mk ko lm có ở bài trc rồi
\(x^2+14x+49=\left(x+7\right)^2\)
\(x^2-22x+121=\left(x-11\right)^2\)
\(4x^2-4x+1=\left(2x-1\right)^2\)
\(x^2-4x+4=\left(x-2\right)^2\)
\(x^2-2xy+y^2=\left(x-y\right)^2\)
\(4x^2-4xy+y^2=\left(2x-y\right)^2\)
Bài 1:
a, x2-3xy-10y2
=x2+2xy-5xy-10y2
=(x2+2xy)-(5xy+10y2)
=x(x+2y)-5y(x+2y)
=(x+2y)(x-5y)
b, 2x2-5x-7
=2x2+2x-7x-7
=(2x2+2x)-(7x+7)
=2x(x+1)-7(x+1)
=(x+1)(2x-7)
Bài 2:
a, x(x-2)-x+2=0
<=>x(x-2)-(x-2)=0
<=>(x-2)(x-1)=0
<=>\(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
b, x2(x2+1)-x2-1=0
<=>x2(x2+1)-(x2+1)=0
<=>(x2+1)(x2-1)=0
<=>x2+1=0 hoặc x2-1=0
1, x2+1=0 2, x2-1=0
<=>x2= -1(loại) <=>x2=1
<=>x=1 hoặc x= -1
c, 5x(x-3)2-5(x-1)3+15(x+2)(x-2)=5
<=>5x(x-3)2-5(x-1)3+15(x2-4)=5
<=>5x(x2-6x+9)-5(x3-3x2+3x-1)+15x2-60=5
<=>5x3-30x2+45x-5x3+15x2-15x+5+15x2-60=5
<=>30x-55=5
<=>30x=55+5
<=>30x=60
<=>x=2
d, (x+2)(3-4x)=x2+4x+4
<=>(x+2)(3-4x)=(x+2)2
<=>(x+2)(3-4x)-(x+2)2=0
<=>(x+2)(3-4x-x-2)=0
<=>(x+2)(1-5x)=0
<=>\(\orbr{\begin{cases}x+2=0\\1-5x=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\-5x=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{-1}{-5}\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{1}{5}\end{cases}}\)
Bài 3:
a, Sắp xếp lại: x3+4x2-5x-20
Thực hiện phép chia ta được kết quả là x2-5 dư 0
b, Sau khi thực hiện phép chia ta được :
Để đa thức x3-3x2+5x+a chia hết cho đa thức x-3 thì a+15=0
=>a= -15
bài 1, bạn tự làm nhé đặt chia đi bạn
bài 2
a,\(\left(x^2-2xy+y^2\right)+2\left(x-y\right)=\left(x-y\right)^2+2\left(x-y\right)=\left(x-y\right)\left(x-y+2\right)\)
\(b,=a^2-2a-5a+10=a\left(a-2\right)-5\left(a-2\right)=\left(a-2\right)\left(a-5\right)\)
a) \(2x^2\left\{x^2+5x+6\right\}\)=\(2x^4+10x^3+12x^2\)
b) \(15x^2y^4:10x^2y\)=\(\frac{3}{2}y^3\)
c) \(\left\{16x^3y^2+20x^2y^3-8xy\right\}:4xy\)=\(4x^2y+5xy^2-2\)
a/ \(2x^3-x^2-x+1=\left(x^2-2x\right)\left(2x+3\right)+5x+1\)
b/ \(5x^3-x+2=\left(x^2+2x-3\right)\left(5x-10\right)+34x-28\)
1) \(2x^2-5x+3=2x^2-2x-3x+3=2x\left(x-1\right)-3\left(x-1\right)\)
\(=\left(2x-3\right)\left(x-1\right)=\left(2x+2-5\right)\left(x+1-2\right)=\left(2\left(x+1\right)-5\right)\left(x+1-2\right)\)
\(=\left(2y-5\right)\left(y-2\right)\)