Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác ABC và tam giác DAB có:
góc BAC = góc ADB=90 độ
góc ABC = góc BAD( so le trong của Ax//BC)
do đó: tam giác ABC đồng dạng với tam giác DAB(g-g)
b, áp dụng định lí pytago vào tam giác ABC vuông tại A có:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\)
theo cm câu a : tam giác ABC đồng dạng với tam giác DAB
=>\(\frac{AB}{AD}=\frac{BC}{AB}=\frac{AC}{BD}\)
\(\Rightarrow AD=\frac{AB^2}{BC}=\frac{15^2}{25}=9cm\)
\(BD=\frac{AB.AC}{BC}=\frac{15.20}{25}=12cm\)
c, \(S_{ABD}=\frac{1}{2}.AD.BD=\frac{1}{2}.9.12=54cm^2\)
Bài 1:Cho tam giác ABC vuông tại A có AB = 3cm ; BC = 5cm . AD là đg phân giác của tam giác ABC . có:
A. BD = 20/7 cm; CD = 15/7cm.
B. BD = 15/7 cm; CD = 20/7 cm
C. BD = 1,5 cm; CD = 2,5 cm
D. BD = 2,5 cm; CD = 1,5 cm
Bài 2: Cho tâm giác ABC có BD là đg phân giác , AB = 8cm , BC = 10cm , CA = 6cm . Ta có:
A. DA = 8/3 ; DC = 10/3
B. DA = 10/3; DC = 8/3
C. DA = 4; DC = 2
D. DA = 2,5; DC = 2,5
Bài 3: Cho tâm giác ABC có góc A là 120, AD là đg phân giác. Chứng minh đc rằng:
A. 1/AB + 1/AC = 2/AD
B. 1/AD + 1/AC = 1/AB
C. 1/ AB + 1/AC = 1/AD
D. 1/AB + 1/AC = 1
Bài 4: Cho tâm giác ABC . Tia phân giác trong của góc A cắt BC tại D . Cho AB = 6, AC = x , BD = 9, BC = 21. Hãy chọn kết quả đúng về độ dài x :
A. x = 14
B. x = 12
C. x = 8
D. Một kết quả khác
Bài 5: Tâm giác ABC có cạnh AB = 15 cm , AC = 20cm, BC = 25cm. Đg phân giác của góc BAC cắt cạnh BC tại D. Vậy độ dài DB là :
A.10
B.10_5/7
C.14
D.14_2/7
Bài 6: Tam giác ABC có cạnh AB bằng 15cm, AC = 20cm, BC = 25cm. Đg phân giác góc BAC cắt BC tại D. Vậy tỉ số diện tích của 2 tâm giác ABD và ACD là:
A. 1/4
B. 1/2
C. 3/4
D.1/3
Bài 7: Độ dài các cạnh tâm giác BAC tỉ lệ với 2:3:4 BD là tâm giác trong ứng với cạnh ngắn nhất AC, chia AC thành 2 đoạn AD và CD . nếu độ dài là 10, thế thì độ dài của đoạn thẳng dài hơn trong 2 đoạn AD và CD là:
A. 3,5
B.5
C. 40/7
D.6
Bài 8:
Cho tam giác ABC có góc B = 50 , M là trung điểm của BC . Tia phân giác của góc AMB cắt AB tại E . Tia phân giác của góc AMC cắt AC tại F. Phát biêủ nào sau đây là đúng:
A. ME//AC
B. góc AEF = 50°
C. Góc FMC = 50°
D. MB/MA= FA/FC
Bài 9: Cho tam giác ABC vuông tại A có AB= 8cm , BC = 10cm , CD là đg phân giác. Ta chứng tỏ đc:
A. DA = 3cm
B. DB = 5cm
C. AC = 6cm
D. Cả 3 đều đúng
Xét tam giác ABC \(\perp\)tại A
Áp dụng định lí pi-ta-go ta có :
BC2 = AB2 + AC2
BC2 = 152 + 202
BC2 = 625
BC = 25
Do AD là đường phân giác \(\widehat{A}\)
=) \(\frac{B\text{D}}{C\text{D}}\)= \(\frac{AB}{AC}\)
=) \(\frac{B\text{D}}{BC-B\text{D}}\)= \(\frac{15}{20}\)
=) \(\frac{B\text{D}}{25-B\text{D}}\)= \(\frac{15}{20}\)
=) 20.BD = 15.( 25 - BD )
20.BD = 375 - 15.BD
20.BD + 15.BD = 375
35. BD = 375
BD \(\approx\)10,7
=) CD \(\approx\)24,3
1)
A B H D c m n
Kẻ AH là đường cao của ABC
Ta có :\(S_{ABCD}=\frac{1}{2}.AH.BD ; S_{ADC}=\frac{1}{2}.AH.CD\)
\(\Rightarrow\frac{S_{ABC}}{S_{ADC}}=\frac{\frac{1}{2}.AH.BD}{\frac{1}{2}.AH.CD}=\frac{BD}{CD}\left(1\right)\)
\(\Delta ABC\)có AD là tia phân giác
\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}\left(2\right)\)
Từ (1)(2)
\(\Rightarrow\frac{S_{ABCD}}{S_{ACD}}=\frac{AB}{AC}=\frac{m}{n}\)
Vậy tỉ số của tam giác ABD và ACD là \(\frac{m}{n}\)
B A C E D
a) Câu này bạn biết làm rồi nên mình không làm nữa nhé !!
b) Ta thấy, BD là đường phân giác trong của tam giác ABC, mà \(BD\perp BE\)
Do đó, BE là đường phân giác ngoài của tam giác ABC
\(\Rightarrow\frac{AB}{BC}=\frac{AE}{CE}\Rightarrow AB\cdot CE=AE\cdot BC\)
\(\Leftrightarrow AB\cdot CE=\left(AC+CE\right)\cdot BC\)
\(\Leftrightarrow AB\cdot CE-EC\cdot BC=AC\cdot BC\)
\(\Leftrightarrow EC\cdot\left(AB-BC\right)=AC\cdot BC\)
\(\Leftrightarrow EC\cdot5=15\cdot10\)
\(\Leftrightarrow EC=30\left(cm\right)\)
Vì BD là đường phân giác của \(\widehat{ABC}\), nên
\(\frac{AD}{DC}=\frac{AB}{BC}\)(tính chất đường phân giác)
=> \(\frac{AD}{AD+DC}=\frac{AB}{AB+BC}\)hay \(\frac{AD}{AC}=\frac{AB}{AB+BC}\)
Mà tam giác ABC cân tại A do AB=AC=15cm
=> \(\frac{AD}{15}=\frac{15}{15+10}\)=> \(AD=\frac{15\cdot15}{15}=9\left(cm\right)\)
Vậy DC=AC-AD=15-9=6 (cm)
b) Vì BE _|_ BD nên BE là đường phân giác góc ngoài lại đỉnh B
=> \(\frac{EC}{AE}=\frac{BC}{BA}\)(tính chất đường phân giác)
=> \(\frac{EC}{EC+AC}=\frac{BA}{BC}\Rightarrow EC\cdot BA=BC\left(EC+AC\right)\)
=> \(EC\cdot BA-EC\cdot BC=BC\cdot AC\)
=> \(EC\left(BA-BC\right)=BC\cdot AC\)
Vậy \(EC=\frac{BC\cdot AC}{BA-BC}=\frac{10\cdot15}{15-10}=30\left(cm\right)\)
Áp dụng tinh chất của đường phân giác ta có:
BD/DC = AB/AC ⇔ BD/( BC - DB) = AB/AC
hay BD /( 25 - BD) = 15/20 = 3/4 ⇔ 4BD = 75 - 3BD ⇔ 7BD = 75 ⇒ BD = 10(5/7)
Chọn đáp án B.