K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(x-2\right)^4+\left(2y-1\right)^{2022}< =0\)

mà \(\left(x-2\right)^4+\left(2y-1\right)^{2022}>=0\forall x,y\)

nên \(\left\{{}\begin{matrix}x-2=0\\2y-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)

\(M=11xy^2+4xy^2=15xy^2=15\cdot2\cdot\left(\dfrac{1}{2}\right)^2=\dfrac{15}{2}\)

1 tháng 11 2023

(x + 20)⁴ + (2y - 1)²⁰²⁴ ≤ 0

⇒ (x + 20)⁴ = 0 và (2y - 1)²⁰²⁴ = 0

*) (x + 20)⁴ = 0

x + 20 = 0

x = 0 - 20

x = -20

*) (2y - 1)²⁰²⁴ = 0

2y - 1 = 0

2y = 1

y = 1/2

M = 5.(-20)².1/2 - 4.(-2).(1/2)²

= 1000 + 2

= 1002

AH
Akai Haruma
Giáo viên
8 tháng 12 2023

Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn.

9 tháng 11 2019

Ta có : \(\hept{\begin{cases}\left(x-2\right)^4\ge0\forall x\\\left(2y-1\right)^{2018}\ge0\forall y\end{cases}\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2018}\ge0\forall x,y}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2\right)^4=0\\\left(2y-1\right)^{2018}=0\end{cases}\Rightarrow\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\2y=1\end{cases}}}\Rightarrow\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)

Khi đó : \(M=11.2^2.\frac{1}{2}+4.2.\left(\frac{1}{2}\right)^2=\frac{11.4}{2}+\frac{4.2}{4}=22+2=24\)

Vậy M = 24

6 tháng 11 2023

|2x - 1| + (y - 2)² ≤ 0 (1)

Do |2x - 1| ≥ 0 và (y - 2)²⁰²² ≥ 0 (với mọi x, y ∈ R)

(1) ⇒  |2x - 1| + (y - 2)²⁰²² = 0

⇒ |2x - 1| = 0 và (y - 2)²⁰²² = 0

*) |2x - 1| = 0

2x - 1 = 0

2x = 1

x = 1/2

*) (y - 2)²⁰²² = 0

y - 2 = 0

y = 2

⇒ B = 12x² + 4xy²

= 12.(1/2)² + 4.(1/2).2²

= 3 + 8

= 11

15 tháng 4 2017

Vì \(\left(x-2\right)^4\ge0\forall x\)dấu "=" xảy ra \(\Leftrightarrow\)x-2=0 \(\Leftrightarrow\)x=2

\(\left(2y-1\right)^{2014}\ge0\forall y\)Dấu "=" xảy ra \(\Leftrightarrow\)2y - 1=0 \(\Leftrightarrow y=\frac{1}{2}\)

\(\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2014}\ge0\)

Kết hợp với điều kiện đề bài \(\left(x-1\right)^4+\left(2y-1\right)^{2014}\le0\), ta được:

\(\left(x-2\right)^4+\left(2y-1\right)^{2014}=0\)

Vậy x = 2; \(y=\frac{1}{2}\)

Thay x=2; \(y=\frac{1}{2}\)vào M, ta có:

\(M=21.2^2.\frac{1}{2}+4.2.\left(\frac{1}{2}\right)^2\)

\(=21.4.\frac{1}{2}+4.2.\frac{1}{4}\)

\(=42+2=44\)

Vậy M=44

1 tháng 5 2023

Giá trị của biểu thức \(M=-2x^2.y^3-4xy^2\) tại x=1 và y=2 là:
\(M=-2x^2.y^3-4xy^2=-2.1^2.2^3-4.1.2^2=-32\)

⇒ Chọn B

M=6x^2+9xy-y^2-5x^2+2xy=x^2+11xy-y^2
(2x-5)^2020+(3y+4)^2022<=0

=>x=5/2 và y=-4/3

M=25/4+11*5/2*(-4/3)-16/9=-1159/36