K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2017

Ta có: \(x^2+1\ge2x\Leftrightarrow\left(x-1\right)^2\ge0\)

Tương tự cũng có 2 BĐT còn lại:

\(y^2+1\ge2y;z^2+1\ge2z\)

Và \(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)

Cộng theo vế các BĐT trên ta có:

\(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+xz\right)\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)+3\ge12\Leftrightarrow x^2+y^2+z^2\ge3\)

Khi x=y=z=1

28 tháng 8 2017

đây là phương pháp già vậy ạ

5 tháng 2 2020

Áp dụng BĐT Cô-si dạng Engel,ta có :

\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\)

Mà \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le x+y+z\)

\(\Rightarrow\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{3}{2}\)

Dấu "=" xảy ra khi x = y = z = \(\frac{3}{2}\)

5 tháng 2 2020

nhầm sửa x = y = z = 1 nha

7 tháng 3 2016

Đề sai rồi kìa 

7 tháng 3 2016

sai đâu sử cho đúng

21 tháng 9 2018

\(3=x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\)

\(\Rightarrow xyz\le1\)

\(\sqrt[3]{x^2}+\sqrt[3]{y^2}+\sqrt[3]{z^2}\le\frac{x^2+1+1}{3}+\frac{y^2+1+1}{3}+\frac{z^2+1+1}{3}=3\)

Ta co:

\(A=\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}=\frac{x\sqrt[3]{x}}{\sqrt[3]{xyz}}+\frac{y\sqrt[3]{y}}{\sqrt[3]{xyz}}+\frac{z\sqrt[3]{z}}{\sqrt[3]{xyz}}\)

\(\ge x\sqrt[3]{x}+y\sqrt[3]{y}+z\sqrt[3]{z}\)

\(\Rightarrow3A\ge3\left(x\sqrt[3]{x}+y\sqrt[3]{y}+z\sqrt[3]{z}\right)\ge\left(x\sqrt[3]{x}+y\sqrt[3]{y}+z\sqrt[3]{z}\right)\left(\sqrt[3]{x^2}+\sqrt[3]{y^2}+\sqrt[3]{z^2}\right)\)

\(\ge\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

\(\Rightarrow A\ge xy+yz+zx\)

25 tháng 5 2020

Áp dụng BĐT Cauchy - Schwarz, ta có: \(3\left(x^2+y^2+z^2\right)=\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=3=x^2+y^2+z^2\)(Do \(x^2+y^2+z^2=3\))

Ta có: \(\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{zx}}+\frac{z}{\sqrt[3]{xy}}=\frac{x}{\sqrt[3]{yz.1}}+\frac{y}{\sqrt[3]{zx.1}}+\frac{z}{\sqrt[3]{xy.1}}\)

\(\ge\frac{x}{\frac{y+z+1}{3}}+\frac{y}{\frac{z+x+1}{3}}+\frac{z}{\frac{x+y+1}{3}}\)\(=\frac{3x}{y+z+1}+\frac{3y}{z+x+1}+\frac{3z}{x+y+1}\)

\(=\frac{3x^2}{xy+zx+x}+\frac{3y^2}{yz+xy+y}+\frac{3z^2}{zx+yz+z}\)\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)+\left(x+y+z\right)}\)(Theo BĐT Cauchy - Schwarz dạng Engle)

\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)+x^2+y^2+z^2}=\frac{3\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=3=x^2+y^2+z^2\)

\(\ge xy+yz+zx\)

Đẳng thức xảy ra khi x = y = z = 1

28 tháng 12 2019

\(\frac{x^4}{y+3z}+\frac{y+3z}{16}+\frac{1}{4}+\frac{1}{4}\ge4\sqrt[4]{\frac{x^4}{y+3z}.\frac{y+3z}{16}.\frac{1}{4}.\frac{1}{4}}=x\)

\(\Rightarrow\frac{x^4}{y+3z}\ge x-\frac{y+3z}{16}-\frac{1}{2}\)

Tương tự cho 2 BĐT còn lại : 

\(\frac{y^4}{z+3x}\ge y-\frac{z+3x}{16}-\frac{1}{2};\frac{z^4}{z+3y}\ge z-\frac{x+3y}{16}-\frac{1}{2}\)

Công theo vế 3 BĐT trên ta được :

\(VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{2}\ge\frac{3}{4}.3-\frac{3}{2}=\frac{3}{4}\)

Đẳng thức xảy ra khi \(x=y=z=1\)

Chúc bạn học tốt !!!

29 tháng 12 2019

Cách 2:

\(VT\ge\frac{\left(x^2+y^2+z^2\right)^2}{4\left(x+y+z\right)}\ge\frac{\frac{\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2}{3}}{4\left(x+y+z\right)}\ge\frac{\left(xy+yz+zx\right)\left(x+y+z\right)}{12}\)

\(\ge\frac{\left(xy+yz+zx\right)\sqrt{3\left(xy+yz+zx\right)}}{12}\ge\frac{3}{4}\)

Đẳng thức xảy ra khi \(x=y=z=1\)

12 tháng 9 2017

\(M=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=\frac{y^3z^3+x^3z^3+x^3y^3}{x^2y^2z^2}=\frac{\left(yz+xz\right)^3+x^3y^3-3xy^2z^3-3x^2yz^3}{x^2y^2z^2}\)

\(=\frac{\left(yz+xz+xy\right)\left[\left(yz+xz\right)^2+xy\left(yz+xz\right)+x^2y^2\right]-3xyz^2\left(xz+yz\right)}{x^2y^2z^2}\)

\(=\frac{0.\left[\left(yz+xz\right)^2+xy\left(yz+xz\right)+x^2y^2\right]-3xyz^2\left(xz+yz\right)}{x^2y^2z^2}\)

\(=\frac{-3xyz^2\left(xz+yz\right)}{x^2y^2z^2}=\frac{-3\left(xz+yz\right)}{xy}=\frac{-3.\left(-xy\right)}{xy}=3\)

12 tháng 9 2017

ta có xy+yz+zx=0=> \(\frac{xy+yz+zx}{xyz}=0\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

đặt \(\frac{1}{x}=a,\frac{1}{y}=b,\frac{1}{z}=c\Rightarrow a+b+c=0\)

ta xét \(a^3+b^3+c^3-3abc=a^3+b^3+3ab\left(a+b\right)+c^3-3ab-3abc\)

           \(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

=> \(a^3+b^3+c^3=3abc\) \(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)

=> \(M=\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}=\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz.\frac{3}{xyz}=3\)

=> M=3

9 tháng 2 2017

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{yz}+\sqrt{xz}+\sqrt{xy}}\)

Xét \(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{yz}+\sqrt{xz}+\sqrt{xy}}\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}\sqrt{yz}\le\frac{y+z}{2}\\\sqrt{xz}\le\frac{x+z}{2}\\\sqrt{xy}\le\frac{x+y}{2}\end{matrix}\right.\)

\(\Rightarrow\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\le\frac{y+z}{2}+\frac{x+z}{2}+\frac{x+y}{2}\)

\(\Rightarrow\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\le\frac{2\left(x+y+z\right)}{2}\)

\(\Rightarrow\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\le x+y+z\)

\(\Rightarrow x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le2\left(x+y+z\right)\)

\(\Rightarrow\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{xz}+\sqrt{yz}}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)

Ta có: \(x+y+z\ge3\)

\(\Rightarrow\frac{x+y+z}{2}\ge\frac{3}{2}\)

\(\Rightarrow\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{xz}+\sqrt{yz}}\ge\frac{3}{2}\)

\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{yz}+\sqrt{xz}+\sqrt{xy}}\)

\(\Rightarrow\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\) ( đpcm )

7 tháng 1 2017

Cộng 1 vào 2 vế của 3 pt ta được: 
x+xy+y+1=1+1 <=> (x+1)(y+1)=2 
y+yz+z+1=3+1 <=> (y+1)(z+1)=4 
z+xz+z+1=7+1 <=> (z+1)(x+1)=8 
Ta có: (x+1)(y+1)(y+1)(z+1)=(y+1)2 .8=2.4=8 => (y+1)2 =1 

(y+1)(z+1)(z+1)(x+1)=(z+1)2 .2=4.8=32 => (z+1)2 =16 

(z+1)(x+1)(x+1)(y+1)=(x+1)2 .4=2.8=16 => (x+1)2 =4 
Do x;y;z không âm nên x= 1; y= 0; z= 3 
=> M = 1 +02 +32 =10

16 tháng 8 2018

ket qua =10