K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2016

1./ Từ \(a^2\left(b+c\right)=b^2\left(c+a\right)\Leftrightarrow a^2b-ab^2+ca^2-cb^2=0\Leftrightarrow ab\left(a-b\right)+c\left(a-b\right)\left(a+b\right)=0.\)

\(\Leftrightarrow\left(a-b\right)\left(ab+bc+ac\right)=0.\)Mà \(a\ne b\Rightarrow ab+bc+ac=0\)(1)

2./ Từ \(a^2\left(b+c\right)=b^2\left(c+a\right)\Leftrightarrow\frac{a^2}{a+c}=\frac{b^2}{b+c}=\frac{a^2-b^2}{a-b}=a+b\)Vì \(a\ne b\)\(\Rightarrow a^2=\left(a+b\right)\left(a+c\right)\).

\(\Rightarrow2012=a^2\left(b+c\right)=\left(a+b\right)\left(a+c\right)\left(b+c\right)=\left(a+b\right)\left(ab+bc+ac+c^2\right)=c^2\left(a+b\right)\)

3./ Vậy \(M=c^2\left(a+b\right)=2012.\)

1 tháng 5 2020

Áp dụng BĐT cô si ta có :

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}=3\)

\(\Rightarrow BĐT\)cần \(CM\)\(3>\frac{9}{a+b+c}\Leftrightarrow a+b+c>3\)

Mà a,b,c > 0 => abc > 0

 \(\Rightarrow a+b+c\ge3\sqrt[3]{abc}\ge3\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b=c\\a^2=b^2=c^2=1\end{cases}\Leftrightarrow}a=b=c=1\)

1 tháng 5 2020

\(abc\ge1\)khi nào vậy bạn

22 tháng 1 2021

Đề bài thiếu hở :??

18 tháng 7 2018

                 \(a^2+b^2+c^2=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)

\(\Leftrightarrow\)\(a^2+b^2+c^2=a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\)

\(\Leftrightarrow\)\(a^2+b^2+c^2=2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\)\(a^2+b^2+c^2=2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\)\(a^2+b^2+c^2=18\)   ( do ab+bc+ca = 9 )

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=18+2.9=36\)

\(\Rightarrow\)\(a+b+c=6\)   ( do a,b,c là các số thực dương)

18 tháng 7 2018

\(a^2+b^2+c^2=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)

\(a^2+b^2+c^2=2a^2+2b^2+2c^2-2ab-2bc-2ca\)

\(a^2+b^2+c^2-2.\left(ab+bc+ca\right)=0\)( cùng bớt \(a^2+b^2+c^2\)ở cả 2 vế )

\(a^2+b^2+c^2-2.9=0\)

\(a^2+b^2+c^2=18\)

Ta có:

\(\left(a+b+c\right)^2\)

\(=a^2+b^2+c^2+2ab+2bc+2ca\)

\(=18+2.\left(ab+bc+ca\right)\)

\(=18+2.9\)

\(=18+18\)

\(=36\)

\(\Rightarrow a+b+c=\sqrt{\left(a+b+c\right)^2}=\sqrt{36}=6\)

Vậy \(a+b+c=6\)

Tham khảo nhé~

1 tháng 5 2020

Bạn chứng minh các công thức sau:

\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

Ta có:

\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\Rightarrow a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(9=\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Rightarrow ab+bc+ca=-10\)

Khi đó \(P=3^3-3\left[\left(-10\right)\cdot3-11\right]\) không biết tính nhanh ntnào hết :P