Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt AM-GM ta có:
\(\dfrac{a^2}{4}+b^2\ge2\sqrt{\dfrac{a^2b^2}{4}}=\dfrac{2ab}{2}=ab\)
\(\dfrac{a^2}{4}+c^2\ge2\sqrt{\dfrac{a^2c^2}{4}}=\dfrac{2ac}{2}=ac\)
\(\dfrac{a^2}{4}+d^2\ge2\sqrt{\dfrac{a^2d^2}{4}}=\dfrac{2ad}{2}=ad\)
\(\dfrac{a^2}{4}+1\ge2\sqrt{\dfrac{a^2}{4}}=\dfrac{2a}{2}=a\)
Cộng theo vế: \(a^2+b^2+c^2+d^2+1\ge ab+ac+ad+a=a\left(b+c+d+1\right)\)Dấu "=" xảy ra khi: \(a=2;b=c=d=1\)
\(a^2+b^2+c^2+d^2+1\ge a\left(b+c+d+1\right)\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4\ge4ab+4ac+4ad+4a\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4-4ab-4ac-4ad-4a\ge0\)
\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-2ac+4c^2\right)+\left(a^2-4ad^2+4d^2\right)+\left(a^2-4a+4\right)\ge0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2\right)^2\ge0\) ( luôn đúng)
Dấu "=" xảy ra khi: a = 2; b = c = d = 1
\(a^2+b^2+c^2+d^2+e^2\ge ab+ac+ad+ae\)
Ta có :
\(a^2+b^2+c^2+d^2+e^2\)
\(=\left(\dfrac{a^2}{4}+b^2\right)+\left(\dfrac{a^2}{4}+c^2\right)+\left(\dfrac{a^2}{4}+d^2\right)+\left(\dfrac{a^2}{4}+e^2\right)\)
Ta lại có :
\(\left(\dfrac{a}{2}-b\right)^2\ge0\Leftrightarrow\) \(\dfrac{a^2}{4}-ab+b^2\ge0\) \(\dfrac{\Rightarrow a^2}{4}+b^2\ge ab\)
Tương tự :
\(\dfrac{a^2}{4}+c^2\ge ac\)
\(\dfrac{a^2}{4}+d^2\ge ad\)
\(\dfrac{a^2}{4}+e^2\ge ae\)
\(\Rightarrow\left(\dfrac{a^2}{4}+b^2\right)+\left(\dfrac{a^2}{4}+c^2\right)+\left(\dfrac{a^2}{4}+d^2\right)+\left(\dfrac{a^2}{4}+e^2\right)\ge ab+ac+ad+ae\)
\(\Rightarrow a^2+b^2+c^2+d^2+e^2\ge ab+ac+ad+ae\)
\(x^2+4y^2+9\ge2xy+3y+6y\)
\(\Leftrightarrow x^2+4y^2+9-2xy-3x-6y\ge0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+3y^2-6y-3x-9\ge0\)
\(\Leftrightarrow\left(x-y\right)^2-3x+3y-3y-6y+3y^2+9\ge0\)
\(\Leftrightarrow\left(x-y\right)^2-3\left(x-y\right)-9y+3y^2+9\ge0\)
\(\Leftrightarrow\left(x-y\right)^2-3\left(x-y\right)+3\left(y^2-3y+\frac{9}{4}\right)-\frac{9}{4}.3+9\ge0\)
\(\Leftrightarrow\left(x-y\right)^2-3\left(x-y\right)+3\left(y-\frac{3}{2}\right)^2+\frac{9}{4}\ge0\)
\(\Leftrightarrow\left(x-y\right)^2-3\left(x-y\right)+\frac{9}{4}+3\left(y-\frac{3}{2}\right)^2\ge0\)
\(\Leftrightarrow\left(x-y-\frac{3}{2}\right)^2+3\left(y-\frac{3}{2}\right)^2\ge0\)
Ta có:
\(\left(x-y-\frac{3}{2}\right)^2\ge0\) \(\forall x,y\)
\(3\left(y-\frac{3}{2}\right)^2\ge0\) \(\forall y\)
\(\Rightarrow\left(x-y-\frac{3}{2}\right)^2+3\left(y-\frac{3}{2}\right)^2\ge0\) \(\forall x,y\)
Dấu = khi i\(y=\frac{3}{2}\)
\(x=\frac{3}{2}+\frac{3}{2}=3\)
b)Sửa đề: Chứng minh \(a^4+b^4+c^4+d^4\ge4abcd\)
Ta chứng minh bài toán phụ: \(a^2+b^2\ge2ab\Leftrightarrow a^2+b^2-2ab\ge0\)
\(\Leftrightarrow\left(a^2-ab\right)-\left(ab-b^2\right)\ge0\) (lớp 7 chưa học hằng đẳng thức nên mình mới làm thế này thôi)
\(\Leftrightarrow a\left(a-b\right)-b\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\left(\text{BĐT đúng}\right)\Rightarrow\text{Q.E.D }\) (chỗ khúc này sửa a.b thành x,y nhé,đánh nhầm,lười đánh lại)
Áp dụng vào,ta có: \(\text{Vế trái}=\left(a^4+b^4\right)+\left(c^4+d^4\right)\ge2a^2b^2+2b^2c^2\)
\(=\left(\sqrt{2a^2b^2}\right)^2+\left(\sqrt{2b^2c^2}\right)^2\ge2\sqrt{2a^2b^2.2b^2c^2}=4abcd\) (đpcm)
d= d* 1
= d* (af- be)
= daf- dbe
= daf- bcf+ bcf- dbe
= f (ad- bc)+b (cf- de)
Do \(\frac{a}{b}\) >\(\frac{c}{d}\) >\(\frac{e}{f}\)nên ad- bc >=af- be=1, cf- de>=1
=> f(ad- be)+ b(cf- de) >= f + b
<=> d >= b+f (đpcm)