Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dạng 1:
a: =>x(x-3)=0
=>x=3 hoặc x=0
b: =>x(3x-4)=0
=>x=4/3 hoặc x=0
c: =>2x-1=0
=>x=1/2
d: =>2x(2x+3)=0
=>x=0 hoặc x=-3/2
e: =>x(2x+5)=0
=>x=-5/2 hoặc x=0
e Giả sử x^2 -3x +2=0 => x^2-3x=-2 => x(x-3)=-2=1*-2=-1*2 và
TH1 x=1 => 1(1-3)=1*-2=-2 ( chọn)
TH2 x=-1 => -1(-1-3) =4( loại)
TH3 x=2 => 2(2-3)=-2( chọn)
TH4 x=-2 => -2(-2-3)=10 ( loại)
Vây số giá trị nghiệm của đa thức đó là 1;2
bài 1 :
b) (x-1/2 )2 = 0
<=> x - 1/2 = 0
<=> x = 0+ 1/2
<=> x = 1/2
c) ( x - 2 ) 2 = 1
<=> x -2 = 1
<=> x = 1 +2 = 3
d) ( 2x -1 )3 = -8
<=> ( 2x - 1) 3 = ( -2 ) 3
<=> 2x - 1 = -2
<=> 2x = -2+1 = -1
<=> x = -1/2
Bài 2 :
c) 32x-1=243
<=> 32x-1= 35
<=> 2x-1 = 5
<=> 2x = 6
<=> x = 6:2 = 3
Mk chỉ giải đc như vậy thôi
bạn thông cảm nhé !
Xin được phép sửa đề =) Đề ban đầu sai òi!
a) Chứng minh rằng \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\). Theo t/c dãy tỉ số bằng nhau,ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)(1). Mặt khác,áp dụng dãy tỉ số bằng nhau lần nữa,ta cũng có:
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\) (2).Từ (1) và (2) ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}^{\left(đpcm\right)}\)
b) Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a^4}{c^4}=\frac{b^4}{d^4}=\left(\frac{a+b}{c+d}\right)^4=\left(\frac{a-b}{c-d}\right)^4\)(1). Mặt khác,theo tính chất dãy tỉ số bằng nhau ta cũng có:
\(\frac{a^4}{c^4}=\frac{b^4}{d^4}=\frac{a^4+b^4}{c^4+d^4}\) (2). Từ (1) và (2) ta có: \(\left(\frac{a-b}{c-d}\right)^4=\frac{a^4+b^4}{c^4+d^4}^{\left(đpcm\right)}\)
Đang rỗi,ngồi giải lại bài này theo cách khác cho vui
Giải
a) CMR: \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)
Ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kb\right)^2+b^2}{\left(kd\right)^2+d^2}=\frac{k^2b^2+b^2}{k^2d^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\) (1)
Lại có: \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(kb+b\right)^2}{\left(kd+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2}{d^2}\) (2)
Từ (1) và (2) ta có: \(\frac{a^2+b^2}{a^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}^{\left(đpcm\right)}\)
b)Tương tự như a)
a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Thay a = bk, c = dk vào \(\frac{a^2+b^2}{c^2+d^2}\) và \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\), ta có:
\(\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)
\(\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\frac{b^2}{d^2}\)
Vì \(\frac{b^2}{d^2}=\frac{b^2}{d^2}\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Vậy \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\) với \(\frac{a}{b}=\frac{c}{d}\)
b) Thay a = bk, c = dk vào \(\left(\frac{a-b}{c-d}\right)^4\)và \(\frac{a^4+b^4}{c^4+d^4}\), ta có:
\(\left(\frac{bk-b}{dk-d}\right)^4=\frac{\left(bk-b\right)^4}{\left(dk-d\right)^4}=\frac{\left[b\left(k-1\right)\right]^4}{\left[d\left(k-1\right)\right]^4}=\frac{b^4\left(k-1\right)^4}{d^4\left(k-1\right)^4}=\frac{b^4}{d^4}\)
\(\frac{\left(bk\right)^4+b^4}{\left(dk\right)^4+d^4}=\frac{b^4k^4+b^4}{d^4k^4+d^4}=\frac{b^4\left(k^4+1\right)}{d^4\left(k^4+1\right)}=\frac{b^4}{d^4}\)
Vì \(\frac{b^4}{d^4}=\frac{b^4}{d^4}\Rightarrow\left(\frac{a-b}{c-d}\right)^4=\frac{a^4+b^4}{c^4+d^4}\)
Vậy \(\left(\frac{a-b}{c-d}\right)^4=\frac{a^4+b^4}{c^4+d^4}\) với \(\frac{a}{b}=\frac{c}{d}\)
A=(2x-3)2+4/9
MinA đạt được khi và chỉ khi (2x-3)2+4/9=4/9
<=> (2x-3)2=0
<=> x=1,5
Vậy MinA=4/9 đạt được khi x=1,5
b, Ta có:
|2x-3/4||\(\ge\)0
=> |2x-3/4|-1/2 \(\ge\) -1/2
MinA=-1/2 đạt được khi và chỉ khi
|2x-3/4|=0
<=>x=3/8
Vậy MinA=-1/2 đạt được khi x=3/8
òi mấy câu còn lại chú cứ làm tương tự không hiểu ib hỏi anh
\(x^2+4y^2+9\ge2xy+3y+6y\)
\(\Leftrightarrow x^2+4y^2+9-2xy-3x-6y\ge0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+3y^2-6y-3x-9\ge0\)
\(\Leftrightarrow\left(x-y\right)^2-3x+3y-3y-6y+3y^2+9\ge0\)
\(\Leftrightarrow\left(x-y\right)^2-3\left(x-y\right)-9y+3y^2+9\ge0\)
\(\Leftrightarrow\left(x-y\right)^2-3\left(x-y\right)+3\left(y^2-3y+\frac{9}{4}\right)-\frac{9}{4}.3+9\ge0\)
\(\Leftrightarrow\left(x-y\right)^2-3\left(x-y\right)+3\left(y-\frac{3}{2}\right)^2+\frac{9}{4}\ge0\)
\(\Leftrightarrow\left(x-y\right)^2-3\left(x-y\right)+\frac{9}{4}+3\left(y-\frac{3}{2}\right)^2\ge0\)
\(\Leftrightarrow\left(x-y-\frac{3}{2}\right)^2+3\left(y-\frac{3}{2}\right)^2\ge0\)
Ta có:
\(\left(x-y-\frac{3}{2}\right)^2\ge0\) \(\forall x,y\)
\(3\left(y-\frac{3}{2}\right)^2\ge0\) \(\forall y\)
\(\Rightarrow\left(x-y-\frac{3}{2}\right)^2+3\left(y-\frac{3}{2}\right)^2\ge0\) \(\forall x,y\)
Dấu = khi i\(y=\frac{3}{2}\)
\(x=\frac{3}{2}+\frac{3}{2}=3\)
b)Sửa đề: Chứng minh \(a^4+b^4+c^4+d^4\ge4abcd\)
Ta chứng minh bài toán phụ: \(a^2+b^2\ge2ab\Leftrightarrow a^2+b^2-2ab\ge0\)
\(\Leftrightarrow\left(a^2-ab\right)-\left(ab-b^2\right)\ge0\) (lớp 7 chưa học hằng đẳng thức nên mình mới làm thế này thôi)
\(\Leftrightarrow a\left(a-b\right)-b\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\left(\text{BĐT đúng}\right)\Rightarrow\text{Q.E.D }\) (chỗ khúc này sửa a.b thành x,y nhé,đánh nhầm,lười đánh lại)
Áp dụng vào,ta có: \(\text{Vế trái}=\left(a^4+b^4\right)+\left(c^4+d^4\right)\ge2a^2b^2+2b^2c^2\)
\(=\left(\sqrt{2a^2b^2}\right)^2+\left(\sqrt{2b^2c^2}\right)^2\ge2\sqrt{2a^2b^2.2b^2c^2}=4abcd\) (đpcm)