Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a_1+a_2+a_3+..+a_{2015}=0\)\(0\)
\(\Rightarrow\left(a_1+a_2\right)+...+\left(a_1+a_{2015}\right)\)\(=\frac{\left(2015-1\right)}{2}+1=1008\)
\(\Rightarrow a_1+\left(a_1+a_2+..+a_{2015}\right)=1008\)
\(\Rightarrow a_1=1008\)
Ta có:
\(a_1+a_2+...+a_{2015}=0\)
\(\Leftrightarrow\left(a_1+a_2\right)+\left(a_3+a_4\right)+...+\left(a_{2013}+a_{2014}\right)+\left(a_{2015}+a_1\right)-a_1=0\)
\(\Leftrightarrow1+1+...+1-a_1=0\)
\(\Leftrightarrow1008-a_1=0\)
\(\Leftrightarrow a_1=1008\)
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2015}}{a_{2016}}=\frac{a_1+a_2+...+a_{2015}}{a_2+a_3+...+a_{2016}}\)
=> \(\left(\frac{a_1}{a_2}\right)^{2015}=\left(\frac{a_2}{a_3}\right)^{2015}=...=\left(\frac{a_{2015}}{a_{2016}}\right)^{2015}=\left(\frac{a_1+a_2+...+a_{2015}}{a_2+a_3+...+a_{2016}}\right)^{2015}=\frac{a_1.a_2...a_{2015}}{a_2.a_3...a_{2016}}=\frac{a_1}{a_{2016}}\)
=> \(\left(\frac{a_1+a_2+...+a_{2015}}{a_2+a_3+...+a_{2016}}\right)^{2015}=\frac{a_1}{a_{2016}}\)(Đpcm)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=....=\dfrac{a_{2000}}{a_{2001}}=\dfrac{a_1+a_2+a_3+....+a_{2000}}{a_2+a_3+a_4+....+a_{2001}}\)
\(\Rightarrow\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}.\dfrac{a_3}{a_4}......\dfrac{a_{2000}}{a_{2001}}=\left(\dfrac{a_1+a_2+a_3+....+a_{2000}}{a_2+a_3+a_4+....+a_{2001}}\right)^{2000}\)
\(\Rightarrow\dfrac{a_1}{a_{2001}}=\left(\dfrac{a_1+a_2+a_3+....+a_{2000}}{a_2+a_3+a_4+....+a_{2001}}\right)^{2000}\)(đpcm)
Ta thấy : \(a_1+a_2+a_3+.....+a_{2015}+a_1=1008.1=1008\)
Mà \(a_1+a_2+a_3+......+a_{2015}=0\)
\(\Rightarrow a_1+\left(a_1+a_2+a_3+....+a_{2015}\right)=1008\Leftrightarrow a_1+0=1008\) \(\Rightarrow a_1=1008\)