Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4x+5y=7
4x+5y=7 (x, y nguyen)=>y=3-4n; x=5n-2
B(n)=5I5n-2I-3I4n-3I
B(0)=5.2-3.3=1
B(1)=5.3-3.1=12
B(-1)=5.7-3.7=14 (cho an toan, thuc ra chi can b(0)&b(1) la du)
Min(b)=1 khi x=-2, y=3
Ta có 5y = 7 - 4x
Đầu tiên ta thấy rằng để thỏa bài toán thì xy < 0
Nên ta chỉ cần xét 2 trường hợp
TH 1: x > 0 > y thì
\(B=5\left|x\right|-3\left|y\right|=5x+3y\)
\(=5x+3.\frac{7-4x}{5}=\frac{13x+21}{5}\)
B đạt giá trị nhỏ nhất khi x đạt giá trị nhỏ nhất mà ta thấy x nguyên dương, y nguyên âm. Ta dễ dàng tìm được cặp (x, y) = (3, - 1)
=> B = 12
TH 2: x < 0< y thì
\(B=5\left|x\right|-3\left|y\right|=-5x-3y\)
\(=-5x-3.\frac{7-4x}{5}=\frac{-13x-21}{5}\)
B đạt GTNN khi x đạt GTLN mà x nguyên âm, y nguyên dương nên ta dễ dàng tìm được (x, y) = (- 2, 3)
Thế vào ta được B = 1
So sánh 2 trường hợp ta được GTNN của B là 1 đạt được khi (x, y) = (- 2, 3)
cảm ơn nhiều luôn,hôm nay hết lượt rồi mai chọn cho bạn :)))))
*Max
Có: \(x^2+4\ge4x\)
\(y^2+4\ge4y\)
\(z^2+4\ge4z\)
\(\Rightarrow x^2+y^2+z^2+12\ge4\left(x+y+z\right)\)\(\Rightarrow x+y+z\le\frac{x^2+y^2+z^2+12}{4}\)
Lại có \(xy+yz+zx\le x^2+y^2+z^2\)(Auto chứng minh)
Cộng 2 vế của bdtd lại ta đc \(x+y+z+xy+yz+zx\le\frac{5\left(x^2+y^2+z^2\right)+12}{4}\)
\(=\frac{5.12+12}{4}=18\)
"=" KHI x = y= z = 2
*Min : ta có : \(12+2\left(xy+yz+zx\right)\ge x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
\(=\left(x+y+z\right)^2\ge0\)
\(\Rightarrow xy+yz+zx\ge-6\)
Dấu "=" xảy ra <=> x + y + z = 0
Với các giá trị trên ta đc \(x+y+z+xy+yz+zx\ge0-6=-6\)
Dấu "=" <=> x + y + z = 0 và x2 + y2 + z2 = 12
bạn ơi mình giải thế này thì sao nhỉ:
đặt x+y+z=a=> \(a^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
=> \(xy+yz+zx=\frac{a^2-\left(x^2+y^2+z^2\right)}{2}\ge\frac{a^2-12}{2}\)
\(\Rightarrow P\ge a+\frac{a^2-12}{2}\ge-\frac{13}{2}\)( dùng hằng đẳng thức c/m)
dấu " =" <=> \(\hept{\begin{cases}x+y+z=-1\\x^2+y^2+z^2=12\end{cases}}\)
bạn xem thử hộ mik cái =)