K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2019

Em phải học hằng đảng thức lớp 8

Anh giải cho :

ta có: 

<=> \(a^2-2ab+b+ab⋮9\)

<=> \(\left(a-b\right)^2+ab⋮9\)

=> \(\hept{\begin{cases}\left(a-b\right)^2⋮9\\ab⋮9\end{cases}}\)

Xét \(\left(a-b\right)^2⋮9\)

<=> \(\orbr{\begin{cases}a-b⋮3\\a-b⋮-3\end{cases}}\)

<=> \(\orbr{\begin{cases}\hept{\begin{cases}a⋮3\\b⋮3\end{cases}}\\\hept{\begin{cases}a⋮-3\Rightarrow a⋮3\\b⋮-3\Rightarrow b⋮3\end{cases}}\end{cases}}\left(1\right)\)

Xét \(ab⋮9\)

<=> \(\hept{\begin{cases}a⋮9\Rightarrow a⋮3\\b⋮9\Rightarrow b⋮3\end{cases}}\left(2\right)\)

Từ (1) và (2) => \(a⋮3\)

                           \(b⋮3\)

26 tháng 11 2021

Answer:

Ta có:

\(a^2-ab+b^2⋮9⋮3\)

\(\Rightarrow a^2+2ab+b^2-3ab⋮3\)

\(\Rightarrow\left(a+b\right)^2-3ab⋮3\)

\(\Rightarrow\left(a+b\right)^2⋮3\)

\(\Rightarrow a+b⋮3\) (Vì 3 là số nguyên tố)

\(\Rightarrow\left(a+b\right)^2⋮9\)

Mà: \(a^2-ab+b^2=\left(a+b\right)^2-3ab⋮9\)

\(\Rightarrow3ab⋮9\Rightarrow ab⋮3\)

Do vậy: tồn tại ít nhất một trong hai số a hoặc b sẽ chia hết cho 3. Không mất tổng quát, ta giả sử a chia hết được cho 3

Lúc này: \(a.\left(a-b\right)⋮3\) mà \(a^2-ab+b^2=a.\left(a-b\right)+b^2⋮3\)

21 tháng 1 2017

?????????????????????????????

21 tháng 1 2017

Xin lỗi nha. Mk mún giúp lắm nhưng mk mới học lp 5 thui nên đọc đề ko hỉu gì hết đó.

1/ a)Cho A= 20+21+22+23+24+25 +26 .........+ 299  CMR: A chia hết cho 31 b)tìm số tự nhiên n để 3n+4 chia hết cho n -12/tìm hai số nguyên dương a, b  biết  [ a,b] = 240 và (a,b) = 163/tìm hai số nguyên dương a,b biết rằng ab=216 và (a ,b)=64/tìm hai số nguyên dương a,b biết rằng ab=180 , [a,b] =605/tìm hai số nguyên dương a,b biết a/b =2,6 và (a,b) =56/ tìm a,b biết a/b=4/5 và [ a,b ] = 1407/tìm số nguyên dương  a,b biết...
Đọc tiếp

1/ a)Cho A= 20+21+22+23+24+25 +26 .........+ 299  CMR: A chia hết cho 31 

b)tìm số tự nhiên n để 3n+4 chia hết cho n -1

2/tìm hai số nguyên dương a, b  biết  [ a,b] = 240 và (a,b) = 16

3/tìm hai số nguyên dương a,b biết rằng ab=216 và (a ,b)=6

4/tìm hai số nguyên dương a,b biết rằng ab=180 , [a,b] =60

5/tìm hai số nguyên dương a,b biết a/b =2,6 và (a,b) =5

6/ tìm a,b biết a/b=4/5 và [ a,b ] = 140

7/tìm số nguyên dương  a,b biết a+b = 128 và (a ,b)=16

8/ a)tìm a,b biết a+b = 42 và [a,b] = 72 

b)tìm a,b biết a-b =7 , [a,b] =140

9/tìm hai số tự nhiên , biết rằng tổng cúa chúng bằng 100 và có UwCLN là 10

10/ tìm 2 số tự nhiên biết ƯCLN của chúng là 5 và chúng có tích là 300

11/ chứng minh rằng nếu số nguyên tố p> 3 thì (p - 1) . (p + 1)  chia hết cho 24

12/ tìm hai số tự nhiên a,b (a < b ) biết ƯCLN (a,b ) = 12 ,  BCNN(a,b) = 180

 

2
29 tháng 10 2015

BÀI NÀY Ở ĐÂU MÀ NHIỀU THẾ BẠN!?

GIẢI CHẮC ĐÃ LẮM ĐÓ

29 tháng 10 2015

câu 1 a) thíu là chứng minh rằng a chia hết cho 31

 

21 tháng 4 2022

a) tự giải

b) Ta có CT dãy số lũy thừa 

\(a^0+a^1+a^2+...+a^t=\dfrac{a^{t+1}-a^0}{a-1}\)

Mà Mọi số , phép khai căn mũ 0 = 1 nhưng 0 mũ 0 =1 => tập hợp rỗng => Áp dụng đc CT trên

cho nên Tổng A=\(\dfrac{3^{2012+1}-1}{3-1}=\dfrac{3^{2013}-1}{2}\)

lấy B -A, ta đc

\(\dfrac{1}{2}\)

21 tháng 4 2022

cm 

https://icongchuc.com/cac-dang-bai-toan-lien-quan-tong-day-luy-thua-cung-co-so-38128.html

31 tháng 1 2017

VD : a = 3

b=6

32+62=9+36=45

Vây a và b cùng chia hết cho 3 (32=9;62=36)(9 chia hết cho 3 ;36 chia hết cho 3)

31 tháng 1 2017

Ta có:\(\left(a^2+b^2\right)⋮3\Leftrightarrow a^2⋮3;b^2⋮3\)

\(\orbr{\begin{cases}a^2⋮3\\b^2⋮3\end{cases}\Leftrightarrow\orbr{\begin{cases}a⋮3\\b⋮3\end{cases}}}\)

Suy ra:\(a⋮3\)và \(b⋮3\)

Vậy:\(\left(a^2+b^2\right)⋮3\Rightarrow a⋮3⋮;b3\)

4 tháng 3 2020

câu 1 : kochia hết cho 2019