Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tham khảo bài tương tự này :
Câu hỏi của so yeoung cheing - Toán lớp 7 - Học toán với OnlineMath
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a+b-2017c}{c}=\frac{b+c-2017a}{a}=\frac{c+a-2017b}{b}\)
\(=\frac{a+b-2017c+b+c-2017a+c+a-2017b}{a+b+c}=\frac{-2015\left(a+b+c\right)}{a+b+c}=-2015\)
Do đó :
\(\frac{a+b-2017c}{c}=-2015\)\(\Leftrightarrow\)\(a+b=2c\) \(\left(1\right)\)
\(\frac{b+c-2017a}{a}=-2015\)\(\Leftrightarrow\)\(b+c=2a\) \(\left(2\right)\)
\(\frac{c+a-2017b}{b}=-2015\)\(\Leftrightarrow\)\(c+a=2b\) \(\left(3\right)\)
Thay (1), (2) và (3) vào \(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}.\frac{c+a}{c}.\frac{b+c}{b}\) ta được :
\(B=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=\frac{8abc}{abc}=8\)
Vậy \(B=8\)
Chúc bạn học tốt ~
b) Ta có: [tex]\frac{a^{2} + c^{2}}{b^{2} + a^{2}}[/tex]= [tex]\frac{bc + c^{2}}{b^{2} + bc}= \frac{c(b +c)}{b(b + c)}= \frac{c}{b}[/tex] (đpcm)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{2017c-a-b}{c}=\frac{2017b-a-c}{b}=\frac{2017a-b-c}{a}=\frac{\left(2017c-a-b\right)+\left(2017b-a-c\right)+\left(2017a-b-c\right)}{a+b+c}=\frac{2015.\left(a+b+c\right)}{a+b+c}=2015\)
\(\frac{2017c-a-b}{c}=2015\)\(\Rightarrow2017c-a-b=2015c\)\(\Rightarrow2c=a+b\)( 1 )
\(\frac{2017b-a-c}{b}=2015\)\(\Rightarrow2017b-a-c=2015b\)\(\Rightarrow2b=a+c\)( 2 )
\(\frac{2017a-b-c}{a}=2015\)\(\Rightarrow2017a-b-c=2015a\)\(\Rightarrow2a=b+c\)( 3 )
Từ ( 1 ), ( 2 ) và ( 3 ) \(\Rightarrow a=b=c\)
Vậy A = \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(1+1\right).\left(1+1\right).\left(1+1\right)=2^3=8\)