K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2020

\(VT-VP=\frac{\left(2bc+3a-5\right)^2}{3}+\frac{\left(6c+1\right)\left(c-1\right)^2}{2c+3}-\frac{\left(2bc+3b-5\right)^2\left(2c-3\right)}{3\left(2c+3\right)}\)

\(=\frac{\left(3a+3b-5\right)^2}{3}+\frac{\left(3c-5\right)^2}{3}+\frac{1}{3}+2ab\left(2c-3\right)\)

Từ 2 đẳng thức trên suy ra đpcm. (cái đầu đúng cho \(c\le\frac{3}{2}\), cái sau cho \(c\ge\frac{3}{2}\))

Và ta có thể viết SOS cho bài trên! Cách viết dựa trên dao lam, mời các bạn:)

10 tháng 3 2020

Vì a + b + c = 3 nên theo nguyên lí Dirichlet: Tồn tại ít nhất hai số đồng thời không bé hơn 1 hoặc đồng thời không lớn hơn 1

Không mất tính tổng quát có thể g/s hai số đó là a và b

Khi đó ta có: \(\left(a-1\right)\left(b-1\right)\ge0\)

<=> \(ab\ge a+b-1\)

<=> \(abc\ge ac+bc-c=ac+bc+c^2-c^2-c=c\left(a+b+c\right)-c^2-c=2c-c^2\)

Khi đó: \(3\left(a^2+b^2+c^2\right)+4abc\ge\frac{3\left(a+b\right)^2}{2}+3c^2+8c-4c^2=\frac{3\left(3-c\right)^2}{2}-c^2+8c\)

\(=\frac{1}{2}c^2-c+\frac{27}{2}=\frac{1}{2}\left(c^2-2c+1\right)-\frac{1}{2}+\frac{27}{2}=\frac{7}{2}\left(c-1\right)^2+13\ge13\)

Dấu "=" xảy ra <=> a = b = c = 1/

17 tháng 6 2020

Ta có: \(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)+3abc\)

\(=3\left(a^2+b^2+c^2\right)-3\left(ab+bc+ac\right)+3abc\)

Xét: \(4\left(a^2+b^2+c^2\right)-\left(a^3+b^3+c^3\right)\ge9\)(1)

<=> \(\left(a^2+b^2+c^2\right)+3\left(ab+bc+ac\right)-3abc\ge9\)

<=> \(\left(a+b+c\right)^2+\left(ab+bc+ac\right)-3abc\ge9\)

<=> \(ab+bc+ac\ge3abc\)

<=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)(2)

Để chứng (1) đúng ta cần chứng minh (2) đúng

Thật vậy ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)

=> (2) đúng 

Vậy (1) đúng 

Dấu "=" xảy ra <=> a = b = c =1 .

5 tháng 9 2016

đề sai upp làm gì ?

5 tháng 9 2016

đề sai á? tg ns lăng nhăng lên đây thử xem có ai giải k thôi

29 tháng 4 2020

\(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{3}{2}\left(a+b+c\right)\)\(=\left(\frac{1}{a}+\frac{3a}{2}\right)+\left(\frac{1}{b}+\frac{3b}{2}\right)+\left(\frac{1}{c}+\frac{3c}{2}\right)\)

*Nháp*

Dự đoán điểm rơi tại a = b = c = 1 khi đó  \(VT=\frac{15}{2}\)

Ta dự đoán BĐT phụ có dạng \(\frac{1}{x}+\frac{3x}{2}\ge mx^2+n\)(Ta thấy các hạng tử trong điều kiện đã cho ban đầu đều có bậc là 2 nên VP của BĐT phụ cũng có bậc là 2)    (*)

Do đó ta có: \(\frac{1}{a}+\frac{3a}{2}\ge ma^2+n\);\(\frac{1}{b}+\frac{3b}{2}\ge mb^2+n\);\(\frac{1}{c}+\frac{3c}{2}\ge mc^2+n\)

Cộng theo vế của 3 BĐT trên, ta được: \(VT\ge m\left(a^2+b^2+c^2\right)+3n=3\left(m+n\right)=\frac{15}{2}\)

\(\Rightarrow m+n=\frac{5}{2}\Rightarrow n=\frac{5}{2}-m\)

Thay\(n=\frac{5}{2}-m\)vào (*), ta được: \(\frac{1}{x}+\frac{3x}{2}\ge mx^2+\frac{5}{2}-m\)

\(\Leftrightarrow\frac{1}{x}+\frac{3x}{2}-\frac{5}{2}\ge m\left(x^2-1\right)\Leftrightarrow\frac{\left(x-1\right)\left(3x-2\right)}{2x\left(x+1\right)}\ge m\left(x-1\right)\)

\(\Leftrightarrow m\le\frac{3x-2}{2x\left(x+1\right)}\)(**)

Đồng nhất x = 1 vào (**), ta được: \(m=\frac{1}{4}\Rightarrow n=\frac{9}{4}\)

Như vậy, ta được BĐT phụ: \(\frac{1}{x}+\frac{3x}{2}\ge\frac{x^2+9}{4}\)

GIẢI:

Ta có a,b,c là các số thực dương và \(a^2+b^2+c^2=3\Rightarrow0< a^2;b^2;c^2\le3\Rightarrow0< a,b,c\le\sqrt{3}\)

Ta chứng minh BĐT phụ: \(\frac{1}{x}+\frac{3x}{2}\ge\frac{x^2+9}{4}\)(với \(0< x\le\sqrt{3}\))

\(\Leftrightarrow\frac{\left(4-x\right)\left(x-1\right)^2}{4x}\ge0\)(Đúng với mọi \(0< x\le\sqrt{3}\))

Áp dụng ta được: \(\frac{1}{a}+\frac{3a}{2}\ge\frac{a^2+9}{4}\);\(\frac{1}{b}+\frac{3b}{2}\ge\frac{b^2+9}{4}\);\(\frac{1}{c}+\frac{3c}{2}\ge\frac{c^2+9}{4}\)

Cộng theo vế của 3 BĐT trên, ta được: \(VT\ge\frac{\left(a^2+b^2+c^2\right)+9.3}{4}=\frac{15}{2}\)

Đẳng thức xảy ra khi a = b = c = 1

23 tháng 1 2020

Sửa đề: Chứng minh: \(2\le\frac{a^2+b^2+c^2}{a+b+c}+ab+bc+ca\le4\)

Đặt \(a+b+c=3u;ab+bc+ca=3v^2\)

\(\Rightarrow3\left(9u^2-6v^2\right)+3v^2=12\Rightarrow9u^2-6v^2+v^2=4\) (1)

\(\Rightarrow a^2+b^2+c^2=9u^2-6v^2=4-v^2\). Mặt khác từ (1) ta cũng suy ra:

\(\left(3u\right)^2=9u^2=4+5v^2\Rightarrow a+b+c=3u=\sqrt{4+5v^2}\)

Từ giả thiết ta có: \(12=3\left(a^2+b^2+c^2\right)+ab+bc+ca\ge4\left(ab+bc+ca\right)\)

\(\Rightarrow3v^2=ab+bc+ca\le3\Rightarrow0\le v\le1\) (vì \(v=\sqrt{\frac{ab+bc+ca}{3}}\ge0\)..) 

Vì vậy ta cần chứng minh: \(2\le f\left(v\right)=\frac{4-v^2}{\sqrt{4+5v^2}}+3v^2\le4\)  với \(0\le v\le1\)

Dễ thấy hàm số này đồng biến vì vậy f(v) đạt min tại v = 0 tức \(f\left(v\right)_{min}=2\)

Đạt Max tại v = 1 tức \(f\left(v\right)_{max}=4\)

Ta có đpcm.

P/s: Em mới học BĐT nên không chắc đâu, nhất là khúc mà em in đậm ấy.

23 tháng 1 2020

Quên: 

\(f\left(v\right)_{min}=2\Leftrightarrow\left(a;b;c\right)=\left(2;0;0\right)\) và các hoán vị.

\(f\left(v\right)_{max}=4\Leftrightarrow a=b=c=1\)

9 tháng 11 2017

a2(b+c)2+5bc+b2(a+c)2+5ac4a29(b+c)2+4b29(a+c)2=49(a2(1a)2+b2(1b)2)(vì a+b+c=1)
a2(1a)29a24=(2x)(3x1)24(1a)20(vì )<a<1)
a2(1a)29a24
tương tự: b2(1b)29b24
P49(9a24+9b24)3(a+b)24=(a+b)943(a+b)24.
đặt t=a+b(0<t<1)PF(t)=3t24+t94()
Xét hàm () được: MinF(t)=F(23)=19
MinP=MinF(t)=19.dấu "=" xảy ra khi a=b=c=13

1 tháng 8 2017

Đầu tiên chứng minh:

\(a^3+b^3+c^3\ge ba^2+cb^2+ac^2\)

Ta có:

\(3\left(a^3+b^3+c^3\right)=\left(a^3+a^3+b^3\right)+\left(b^3+b^3+c^3\right)+\left(c^3+c^3+a^3\right)\)

\(\ge3\left(a^2b+b^2c+c^2a\right)\)

\(\Rightarrow a^3+b^3+c^3\ge ba^2+cb^2+ac^2\)

Quay lại bài toán ta có:

\(\frac{a^2}{1+b-a}+\frac{b^2}{1+c-b}+\frac{c^2}{1+a-c}\)

\(=\frac{a^4}{a^2+a^2b-a^3}+\frac{b^4}{b^2+b^2c-b^3}+\frac{c^4}{c^2+c^2a-c^3}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)+\left(a^2b+b^2c+c^2a\right)-\left(a^3+b^3+c^3\right)}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)+\left(a^3+b^3+c^3\right)-\left(a^3+b^3+c^3\right)}\)

\(=\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=a^2+b^2+c^2=1\)

1 tháng 8 2017

Áp dụng BĐT AM-GM ta có: 

\(\frac{a^2}{1+b-a}+a^2\left(1+b-a\right)\ge2a^2\)

\(\frac{b^2}{1+c-b}+b^2\left(1+c-b\right)\ge2b^2\)

\(\frac{c^2}{1+a-c}+c^2\left(1+a-c\right)\ge2c^2\)

Cộng theo vế 3 BĐT trên ta có:

\(VT+a^2b+b^2c+c^2a-a^3-b^3-c^3\ge1\)

Cần chứng minh \(a^3+b^3+c^3\ge a^2b+b^2c+c^2a\)

Tiếp tục xài AM-GM \(a^3+a^3+b^3\ge3\sqrt[3]{a^6b^3}=3a^2b\)

TƯơng tự rồi cộng theo vế ta có ĐPCM

Xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)