K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2023

 Vì \(a^2,b^2,c^2\ge0\) nên \(a^2+b^2+c^2\ge0\). ĐTXR \(\Leftrightarrow a=b=c=0\), thỏa mãn đk đề bài. Vậy GTNN của \(a^2+b^2+c^2\) là 0, xảy ra khi \(a=b=c=0\)

4 tháng 8 2015

Dự đoán dấu "=" và chọn điểm rơi phù hợp để áp dụng bất đẳng thức Trung bình cộng - Trung bình nhân

8 tháng 5 2015

a + b2 + c2 < 2

<=> a + b2 + c2 <  a+ b + c

<=> (a - a )+ (b2 - b )+ (c2 - c) < 0

<=> a.(a - 1) + b.(b -1) + c.(c -1) < 0   (*)

Điều này luôn đúng với mọi 0<a<1; 0<b<1; 0<c<1  vì 0<a<1 => a- 1 < 0 => a.(a-1) < 0

tương tự b(b - 1) < 0; c(c -1) < 0

Vậy (*) => đpcm

21 tháng 4 2019

1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

Tương tự :  \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\)\(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)

\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1

21 tháng 4 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)

13 tháng 9 2019

Vì \(0\le a,b,c\le2\)nên:

\(abc+\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)

\(\Leftrightarrow abc+2bc-abc+2ac-4c+2ab-4b-4a+8\ge0\)

\(\Leftrightarrow2bc+2ac+2ab-4\left(a+b+c\right)+8\ge0\)

\(\Leftrightarrow2\left(ab+bc+ac\right)-12+8\ge0\)

\(\Leftrightarrow2\left(ab+bc+ac\right)\ge4\)

Do đó: \(a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ac\right)\le3^2-4=5\)

(Dấu "="\(\Leftrightarrow\)(a,b,c) là các hoán vị của (0,1,2))

15 tháng 2 2018

Câu 1) ngộ thế

26 tháng 4 2020

???????????/ đề kiểu j vậy?

27 tháng 4 2020

ko mất tính tổng quát  ta giả sử a<b<c<d

+ a=1 thì hiển nhiên

+TH: a>1

a+d  và b+c là các lũy thừa của 2 nên $a=2^{x}-mvàvàd=2^{y}+m$

a+d  là lũy thừa của 2 nên x=y do đó $a=2^{x}-mvàvàd=2^{x}+m$

tương tự với b+c có $b=2^{y}-nvàvàc=2^{y}+n$

từ điều kiện a<b<c<d bạn có vô lý