Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Cho các số tự nhiên a,b,c thỏa mãn a2+b2+c2=ab+bc+ca và a+b+c=3. Tính M=a2016+2015b2015+2020c
a2+b2+c2=ab+bc+ca
<=> 2( a2+b2+c2 ) =2( ab+bc+ca )
<=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0
<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ca + a2 ) = 0
<=> ( a - b )2 + ( b - c )2 + ( c - a )2 = 0
Dễ chứng minh VT ≥ 0 ∀ a,b,c. Dấu "=" xảy ra <=> a=b=c
Lại có a+b+c=3 => a=b=c=1
từ đây bạn thế vào tính M nhé :))
2.Cho x>y>0. Chứng minh \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
Ta có : \(\frac{x^2-y^2}{x^2+y^2}>\frac{x-y}{x+y}\)
<=> \(\frac{x^2-y^2}{x^2+y^2}-\frac{x-y}{x+y}>0\)
<=> \(\frac{\left(x^2-y^2\right)\left(x+y\right)}{\left(x^2+y^2\right)\left(x+y\right)}-\frac{\left(x^2+y^2\right)\left(x-y\right)}{\left(x^2+y^2\right)\left(x+y\right)}>0\)
<=> \(\frac{x^3+x^2y-xy^2-y^3}{\left(x^2+y^2\right)\left(x+y\right)}-\frac{x^3-x^2y+xy^2-y^3}{\left(x^2+y^2\right)\left(x+y\right)}>0\)
<=> \(\frac{x^3+x^2y-xy^2-y^3-x^3+x^2y-xy^2+y^3}{\left(x^2+y^2\right)\left(x+y\right)}>0\)
<=> \(\frac{2x^2y-2xy^2}{\left(x^2+y^2\right)\left(x+y\right)}>0\)
<=> \(\frac{2xy\left(x-y\right)}{\left(x^2+y^2\right)\left(x+y\right)}>0\)( đúng vì x > y > 0 )
=> đpcm
Sửa đề: \(a+b+c\le6\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{6}=\frac{3}{2}\)
đpcm
a) \(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2ab+2bc+2ca\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow a=b=c\)
Mà a + b + c = 3 \(\Rightarrow a=b=c=1\)
\(\Rightarrow M=1+2015+2020\)\(=4036\)
b) \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
\(\Rightarrow\left(x-y\right)\left(x^2+y^2\right)< \left(x+y\right)\left(x^2-y^2\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2\right)-\left(x+y\right)\left(x-y\right)\left(x+y\right)< 0\)
\(\Leftrightarrow\left(x-y\right)\left[x^2+y^2-\left(x+y\right)\left(x+y\right)\right]< 0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2-x^2-2xy-y^2\right)< 0\)
\(\Leftrightarrow-2xy\left(x-y\right)< 0\)
Có \(x>y\Rightarrow x-y>0\)
\(\Rightarrow-2xy< 0\)
\(\Leftrightarrow xy>0\)
TH1: \(\orbr{\begin{cases}x>0\\y>0\end{cases}}\)( thỏa mãn )
TH2:\(\orbr{\begin{cases}x< 0\\y< 0\end{cases}}\)( loại )
Vậy bđt được chứng minh