Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(H=2+\dfrac{4-1}{4}+\dfrac{9-1}{9}+\dfrac{16-1}{16}+..+\dfrac{2500-1}{2500}\)\(H=2+49-\dfrac{1}{4}-\dfrac{1}{9}-\dfrac{1}{16}-..-\dfrac{1}{2500}\)
\(H-51=-\dfrac{1}{4}-\dfrac{1}{9}-\dfrac{1}{16}-..-\dfrac{1}{2500}\)
\(H-51=-\left(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+..+\dfrac{1}{50.50}\right)\)
\(-\left(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+..+\dfrac{1}{50.50}\right)>-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+..+\dfrac{1}{49.50}\right)\)
\(H-51>-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+..+\dfrac{1}{49.50}\right)\)
\(H-51>-\left(\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+..+\dfrac{50-49}{49.50}\right)\)
\(H-51>-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
\(H-51>-\left(1-\dfrac{1}{50}\right)\)
\(H>-\dfrac{49}{50}+51>50\)
DẶT A= BIỂU THỨC TRÊN
A=2+1+1+..+1-(1/4+1/9+...+1/2500)
ĐẶT S=1/4+1/9+...+1/2500
S=1/2^2+1/3^2+...+1/50^2
SÓ SỐ HẠNG CỦA S:
(50-2)/1+1=49
SUY RA
1+1+...+1=49
SUY RA A=2+49-S
A=51-S
TAO CÓ :
S<1/1.2+1/2.3+...+1/49.100
S<1-1/2+1/2-1/3+...+1/49-1/50
S<1-1/50
S<49/50
SUY RA A>51-49/50
SUY RA A>50
\(A=1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+...+\frac{1}{2500}\)
\(A=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+\frac{1}{50^2}=\left(1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}
{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)\)(từ 2 đến 50 có 49 số nên có 49 số 1)
\(A=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)<49\) (1)
Nhận xét: \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};\frac{1}{4^2}<\frac{1}{3.4};...;\frac{1}{50^2}<\frac{1}{49.50}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-
\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}<1\)=> \(-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}
{4^2}...+\frac{1}{50^2}\right)>-1\)
=> \(A=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)>49-1=48\)(2)
từ (1)(2) => 48 < A < 49 => A không là số tự nhiên.
Bạn lên mạng có đấy
CM : 3/4 + 8/9 + 15/16 + ...+ 2499/2500 > 48 => 2 + 3/4 + 8/9 + 15/16 + ...+ 2499/2500 > 50 hay H > 50
Tham khảo tại : https://olm.vn/hoi-dap/question/88888.html
Chúc học tốt !!!
\(C=1+1+\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{2500}\right)\)
\(=\left(1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{2500}\right)\)
51 số hạng 49 số hạng
= \(51-\left(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{50.50}\right)\)
\(>51-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{50.51}\right)=51-\left(\frac{1}{2}-\frac{1}{51}\right)=51-\frac{1}{2}+\frac{1}{51}\)
\(=50,5+\frac{1}{51}>50\left(đpcm\right)\)
Vậy C > 50