K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2017

Ta có \(\overrightarrow{AB}\left(5;10\right);\overrightarrow{CD}\left(-4;-8\right)\).
Suy ra \(\overrightarrow{AB}=-\dfrac{5}{4}\overrightarrow{CD}\) nên nay véc tơ này cùng phương nên hoặc 4 điểm A, B, C, D nằm trên một đường thẳng hoặc 2 đường thẳng AB và CD song song. (1)
Mặt khác: \(\overrightarrow{AC}\left(2;-6\right);\overrightarrow{BD}\left(-7;-12\right)\);
\(\dfrac{2}{-7}\ne\dfrac{-6}{-12}\) nên \(\overrightarrow{AC},\overrightarrow{BD}\) không cùng phương vậy 4 điểm A, C, B, D không nằm trên một đường thẳng. (2)
Từ (1) và (2) suy ra: hai đường thẳng AB và CD song song với nhau.

10 tháng 5 2023

Câu 1 \(k\) chạy từ 2 nhé, mình quên.

18 tháng 5 2023

câm mồm vào thằng nhóc

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

Ôn tập cuối năm môn Hình học

Vậy ta được \(M\left(-1;1\right)\)

16 tháng 5 2017

a) \(\overrightarrow{AB}\left(2;-2\right)\); \(\overrightarrow{CA}=\left(4;-4\right)\).
\(\dfrac{2}{4}=\dfrac{-2}{-4}\) nên \(\overrightarrow{AB};\overrightarrow{CA}\) cùng phương . Suy ra ba điểm A, B, C thẳng hàng.
\(\overrightarrow{AB}\left(2;1\right)\); \(\overrightarrow{AC}\left(m+3;2m\right)\).
3 điểm A, B, C thẳng hàng nên hai véc tơ \(\overrightarrow{AB},\overrightarrow{AC}\) cùng phương.
Suy ra: \(\dfrac{m+3}{2}=\dfrac{2m}{1}\Leftrightarrow m+3=4m\)\(\Leftrightarrow m=1\).

I Đại Số bài 1 giải phương trình a )\(x\left(x+3\right)^3-\frac{x}{4}\left(x+3\right)=0\) Bài 2 Tìm giá trị tham số m để phương trình \(\frac{1}{2}\left(y^2+\frac{7}{4}\right)-2y\left(m-1\right)=2m^2-8\) nhận \(y=\frac{1}{2}\)là nghiệm. Bài 3 giải phương...
Đọc tiếp

I Đại Số

bài 1 giải phương trình

a )\(x\left(x+3\right)^3-\frac{x}{4}\left(x+3\right)=0\)

Bài 2 Tìm giá trị tham số m để phương trình \(\frac{1}{2}\left(y^2+\frac{7}{4}\right)-2y\left(m-1\right)=2m^2-8\) nhận \(y=\frac{1}{2}\)là nghiệm.

Bài 3 giải phương trình

a)\(\left(x-1\right)^2=\left(2x+5\right)^2\)

b)\(\frac{\left(x-2\right)^3}{2}=x^2-4x+4\)

c)\(x^3+8=-2x\left(x+2\right)\)

d)\(x^2+8x-5=0\)

e)\(\left(x^2-2x\right)^2-6\left(x^2-2x\right)+9=0\)

g)\(\left(4x-5\right)^2+7\left(4x-5\right)-8=0\)

h)\(\left(x+3\right)^2\left(x^2+6x+1\right)=9\)

j)\(2x\left(8x-1\right)\left(8x^2-x+2\right)-126=0\)

II HÌNH HỌC

Bài1: Cho tam giác ABC có MN//BC và \(\frac{AM}{AB}=\frac{1}{2};MN=3cm\) . Tính BC

Bài 2: Cho hình thang ABCD(AB//CD); hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng song song với AB cắt AD lần lượt tại M và N . Chứng minh OM=ON.

Bài 3: Trên các cạnh của AB, AC của ΔABC lần lượt lấy điểm M và N sao cho \(\frac{AM}{MB}=\frac{AN}{NC}\). Gọi I là trung điểm của BC, K là giao điểm của AI và MN. Chứng minh KM=KN

Bài 4: Cho hình vuông ABCD cạnh 6cm. Trên tia đối của AD lấy điểm I sao cho AI=2cm. IC cắt AB tại K. Tính độ dài IK và IC

1
19 tháng 2 2020
https://i.imgur.com/5ZMFwF5.jpg
18 tháng 5 2017

Muốn chứng minh tứ giác ABCD là tứ giác nội tiếp ta cần chứng minh: \(\widehat{ABC}+\widehat{ADC}=180^o\)\(\Leftrightarrow\)
A B C D
\(\overrightarrow{BA}\left(-1;3\right);\overrightarrow{BC}\left(-2;-4\right)\)
\(cos\widehat{ABC}=cos\left(\overrightarrow{BA};\overrightarrow{BC}\right)\)\(=\dfrac{\left(-1\right).\left(-2\right)+3.\left(-4\right)}{\sqrt{\left(-1\right)^2+3^2}.\sqrt{\left(-2\right)^2+\left(-4\right)^2}}=\dfrac{-\sqrt{2}}{2}\).
Suy ra \(\overrightarrow{ABC}=135^o\).
\(\overrightarrow{DA}\left(4;-2\right);\overrightarrow{DC}\left(3;-9\right)\)
\(cos\widehat{ADC}=\left(\overrightarrow{DA};\overrightarrow{DC}\right)=\dfrac{4.3+\left(-2\right).\left(-9\right)}{\sqrt{4^2+2^2}.\sqrt{\left(3\right)^2+\left(-3\right)^2}}=\dfrac{\sqrt{2}}{2}\)
Suy ra \(\widehat{ADC}=45^o\)
Vậy \(\widehat{ADC}+\widehat{ABC}=135^o+45^o=180^o\).
Vì vậy tứ giác ABCD nội tiếp.

27 tháng 5 2020

Hỏi đáp Toán