K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2020

a) \(A=\frac{3n+11}{n-2}\left(n\inℤ\right)\)

Để A là phân số thì n-2\(\ne\)0

<=> n\(\ne\)2

Vậy n\(\ne\)2 thì A là phân số

b) \(A=\frac{3n+11}{n-2}\left(n\ne2\right)\)

Để A có giá trị nguyên thì \(\frac{3n+11}{n-2}\)đạt giá trị nguyên

=> 3n+11\(⋮\)n-2

Ta có 3n+11=3(n-2)+17

Thấy n-2\(⋮n-2\Rightarrow3\left(n-2\right)⋮7\)

Vậy để 3(n-2)+17 \(⋮n-2\Rightarrow17⋮n-2\)

Có \(n\inℤ\Rightarrow n-2\inℤ\Rightarrow n-2\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\)

Ta có bảng

n-2-17-1117
n-151319

Đối chiếu điều kiện ta được n={-15;1;3;19}

Vậy n={-15;1;3;19} thì A đạt giá trị nguyên

24 tháng 4 2015

n=0;2;4

A lớn nhất <=> n-1 là số nguyên dương nhỏ nhất

                 <=> n-1 = 1

                 <=> n = 2

Vậy GTLN của A = (n+1)/(n-1) = 2+1/2-1 = 3 tại n = 2

 

14 tháng 3 2017

Baif 2:a:

Co:A=n+1/n-2=n-2+3/n-2=n-2/n-2+3/n-2

A=1+3/n-2

=>A thuoc Z <=>3/n-2 thuoc Z <=>3 chia het cho n-2

=>n-2 thuoc U(3) <=>n-2 thuoc (-1;1;-3;3)

<=>n thuoc (1;3;-1;5)

b;

Co:A=1+3/n-2

Ta co A lon nhat <=>n-2 la so nguyen duong nho nhat

<=>n-2=1<=>n=3

Khi do A=1+3/3-2=4

Vay GTLN cua A=4 tai n=3

8 tháng 4 2023

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

16 tháng 4 2016

  a) A = 6n+9-13 / 2n+3 = 3 - 13/2n+3 
để A rút gọn được thì 13 phải chia hết cho 2n+3 
Ư(13) thuộc Z là -13,-1,1,13 
<=> n có thể là -8,-2,-1,5 
câu a ko bít đúng ko, vì cái từ "rút gọn được" hơi khó hỉu, ko biết bạn muốn rút thành phân số tối giản hay theo cách của mình là rút thành số nguyên. Mình giải tiếp câu b đây, câu này dễ, cho mìnk 4,5 * nká 
b) để A nhỏ nhất, A phải là số âm 
=> 6n-4 là số âm, 2n+3 là số dương (TH1) 
hoặc 6n-4 là số dương, 2n+3 là số âm (TH2) 
*TH1: 
6n -4 < 0 <=> 6n < 4 <=> n < 4/6 
2n+3 > 0 <=> 2n > -3 <=> n > -3/2 
mà n thuộc Z 
=> n= 0 hoặc n=-1 
*TH2: 
6n -4 > 0 <=> 6n > 4 <=> n > 4/6 
2n+3 < 0 <=> 2n < -3 <=> n < -3/2 
=> mâu thuẫn 
vậy ta xét tiếp A nhỏ nhất khi n = 0 hoặc n = -1. 
<Tới đây thì bạn tự giải nha> 
tớ giải được A nhỏ nhất (A=-10) khi n = -1

30 tháng 3 2017

giúp mình đi mình cũng ko làm dc bài này 

26 tháng 8 2017

a) Ta có : \(A=\frac{1}{15}.\frac{225}{x+2}+\frac{3}{14}.\frac{196}{3x+6}\)

                   \(=\frac{225}{15}.\frac{1}{x+2}+\frac{196}{14}.\frac{3}{3x+6}\) 

                   \(=15.\frac{1}{x+2}+14.\frac{1}{x+2}\) 

                    \(=\frac{1}{x+2}\left(15+14\right)\) 

                    \(=\frac{1}{x+2}.29\)

                    \(=\frac{29}{x+2}\)

             Vậy A = \(\frac{29}{x+2}\)

b)  Ta có : \(A=\frac{29}{x+2}\)

Để \(A\in Z\Rightarrow\frac{29}{x+2}\in Z\Rightarrow x+2\in\text{Ư}_{\left(29\right)}=\left\{1;-1;29;-29\right\}\text{ }\text{ }\)

Ta xét bảng sau :

x+2   -1    1  -29  29
x -3 -1 -31 27

             Vậy \(x\in\left\{-3;-1;-31;27\right\}\)

c) Trong các giá trị A nguyên trên GTLN của A là 27

                                                      GTNN của A là -31