Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3}{2-x}+\frac{3}{x+2}+\frac{3x^2}{x^2-4}\)
\(A=\frac{-3}{x-2}+\frac{3}{x+2}+\frac{3x^2}{\left(x+2\right)\left(x-2\right)}\)
\(A=\frac{-3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{3x^2}{\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{-3x-6+3x-6+3x^2}{\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{-12+3x^2}{\left(x-2\right)\left(x+2\right)}=\frac{3\left(-4+x^2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{3\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(A=3\)
\(a,A=\frac{3}{2-x}-\frac{3}{x+2}+\frac{3x^2}{x^2-4}\)
\(=\frac{-3\left(x+2\right)-3\left(x-2\right)+3x^2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{-3x-6-3x+6+3x^2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{3x^2-6x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{3x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{3x}{x+2}\)
\(b,ĐKXĐ:\hept{\begin{cases}x-2\ne0\\x+2\ne0\\x+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne\pm2\\x\ne-1\end{cases}}}\)
Ta có : \(P=A:B=\frac{3x}{x+2}:\frac{x+1}{x+2}\)
\(=\frac{3x}{x+2}.\frac{x+2}{x+1}\)
\(=\frac{3x}{x+1}\)
\(=\frac{3x+3}{x+1}-\frac{3}{x+1}\)
\(=3-\frac{3}{x+1}\)
Để P nguyên thì \(3-\frac{3}{x+1}\inℤ\)
\(\Leftrightarrow\frac{3}{x+1}\inℤ\)
Vì \(x\inℤ\Rightarrow x+1\inℤ\)
Ta có bảng :
x + 1 | -3 | -1 | 1 | 3 |
x | -4 | -2 | 0 | 2 |
Vậy \(x\in\left\{-4;-2;0;2\right\}\)
a: \(P=\dfrac{a+3}{a}\cdot\dfrac{a^2-9-6a+18}{\left(a-3\right)\left(a+3\right)}\)
\(=\dfrac{\left(a-3\right)^2}{a\left(a-3\right)}=\dfrac{a-3}{a}\)
b: Để P=-2 thì -2a=a-3
=>-3a=-3
=>a=1
c: Để P nguyên thì a-3 chia hết cho a
=>-3 chia hết cho a
mà a<>0; a<>3; a<>-3
nên \(a\in\left\{1;-1\right\}\)
\(25x^2+16y^2=50xy\)
\(\Leftrightarrow\) \(\left(5x+4y\right)^2-40xy=50xy\)
\(\Leftrightarrow\) \(\left(5x+4y\right)^2=90xy\)
Mặt khác, ta cũng có: \(25x^2+16y^2=50xy\)
\(\Leftrightarrow\) \(\left(5x-4y\right)^2=10xy\)
Do đó:
\(P^2=\frac{\left(5x-4y\right)^2}{\left(5x+4y\right)^2}=\frac{10xy}{90xy}=\frac{1}{9}\)
Vậy, \(P'=\frac{1+\frac{1}{9}}{1-\frac{1}{9}}=1\frac{1}{4}\)
1)
\(25x^2-40xy+16y^2=10xy\Leftrightarrow\left(5x-4y\right)^2=10xy\)
\(25x^2+40xy+16y^2=10xy\Leftrightarrow\left(5x+4y\right)^2=90xy\)
\(P^2=\frac{1}{9}\Leftrightarrow Q=\frac{1+P^2}{1-P^2}=\frac{1+\frac{1}{81}}{1-\frac{1}{81}}=\frac{82}{80}=\frac{41}{40}\)
Bài 3:
Ta có:
\(81^8-1=\left(9^2\right)^8-1=\left[\left(3^2\right)^2\right]^8-1=3^{32}-1\)
\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
Do đó:
\(A=3^4-1=80\)