Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = 1/1.2.3.4 + 1/2.3.4.5 + 1/3.4.5.6 + ... + 1/97.98.99.100
P = 1/1-1/2-1/3-1/4+1/2-1/3-1/4-1/5 +....+1/97-1/98-1/99-1/100
P = 1/1-1/100
P = 99/100
Tính giá trị biểu thức P.3.98.99
Cái đó thì bạn tự tính cũng dc dễ mak
\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{97.98.99.100}=\frac{1}{3}.\left(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{97.98.99.100}\right)=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{98.99.100}\right)=\frac{1}{3}.\left(\frac{1}{6}-\frac{1}{970200}\right)=\frac{1}{18}-\frac{1}{6.970200}\)
\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{97.98.99.100}\)
\(=\frac{1}{3}.\left(\frac{3}{1.2.3.4}+ \frac{3}{2.3.4.5}+...+\frac{3}{97.98.99.100}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{98.99.100}\right)\)
\(=\frac{1}{3}.\frac{161699}{970200}=\frac{161699}{299106000}\)
1.2.3.4+2.3.4.5+3.4.5.6+...+97.98.99.100
4S=(1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100) 4
4S=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+98.99.100(101-97)
4S=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...98.99.100.101-97.98.99.100
4S=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-3.4.5.6+...+97.98.99.100-97.98.99.100+98+99.100+101
4S=98.99.100.101
Vậy S=98.99.100.101/4
\(A=\frac{15\times3^{11}+4\times27^4}{9^7}\)
\(A=\frac{15\times177147+4\times531441}{4782969}\)
\(A=\frac{2657205+2125764}{4782969}\)
\(A=\frac{47829969}{47829969}=1\)
Ta có : \(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)
\(\Leftrightarrow2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{18.19.20}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{18.19}-\frac{1}{19.20}\)
\(=\frac{1}{2}-\frac{1}{19.20}=\frac{189}{380}\)
\(\Rightarrow B=\frac{189}{760}\)
\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}\left(\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{19.20}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{380}\right)\)
\(=\frac{1}{2}.\frac{189}{380}=\frac{189}{760}\)
P=1/1.2.3.4 +1/2.3.4.5 +1/3.4.5.6 +...+1/97.98.99.100
3P=3/1.2.3.4 +3/2.3.4.5 +3/3.4.5.6 +...+3/97.98.99.100
3P=1/1.2.3-1/2.3.4+1/2.3.4-1/3.4.5+................+1/97.98.99-1/98.99.100
3P = 1/1.2.3 - 1/98.99.100
3P =( 98.99.100-1.2.3)/1.2.3.98.99.100
P=( 98.99.100-1.2.3)/1.2.3.98.99.100.3
P=(98.33.50-1)/98.99.100.3
P= 161699/2910600
=398759