K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2016

1)

ĐKXĐ: x\(\ne\)3

ta có :

\(\frac{x^2-6x+9}{2x-6}=\frac{\left(x-3\right)^2}{2\left(x-3\right)}=\frac{x-3}{2}\)

để biểu thức A có giá trị = 1

thì :\(\frac{x-3}{2}\)=1

=>x-3 =2

=>x=5(thoả mãn điều kiện xác định)

vậy để biểu thức A có giá trị = 1 thì x=5

30 tháng 12 2016

1)

\(A=\frac{x^2-6x+9}{2x-6}\)

A xác định

\(\Leftrightarrow2x-6\ne0\)

\(\Leftrightarrow2x\ne6\)

\(\Leftrightarrow x\ne3\)

Để A = 1

\(\Leftrightarrow x^2-6x+9=2x-6\)

\(\Leftrightarrow x^2-6x-2x=-6-9\)

\(\Leftrightarrow x^2-8x=-15\)

\(\Leftrightarrow x=3\) (loại vì không thỏa mãn ĐKXĐ)

3 tháng 3 2020

\(ĐKXĐ:x\ne\pm1\)

a) \(P=\frac{2x+3}{x+1}-\frac{x+2}{x-1}+\frac{3x+5}{x^2-1}\)

\(\Leftrightarrow P=\frac{\left(2x+3\right)\left(x-1\right)-\left(x+2\right)\left(x+1\right)+3x+5}{\left(x-1\right)\left(x+1\right)}\)

\(\Leftrightarrow P=\frac{2x^2+x-3-x^2-3x-2+3x+5}{\left(x-1\right)\left(x+1\right)}\)

\(\Leftrightarrow P=\frac{x^2+x}{\left(x-1\right)\left(x+1\right)}\)

\(\Leftrightarrow P=\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(\Leftrightarrow P=\frac{x}{x-1}\)

b) Để \(P\inℤ\)

\(\Leftrightarrow x⋮x-1\)

\(\Leftrightarrow x-1+1⋮x-1\)

\(\Leftrightarrow1⋮x-1\)

\(\Leftrightarrow x-1\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Leftrightarrow x\in\left\{0;2\right\}\)

Vậy để \(A\inℤ\Leftrightarrow x\in\left\{0;2\right\}\)

26 tháng 6 2018

ĐKXĐ: \(x\ne0;x\ne\pm2\)

a, \(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(=\left[\frac{3x^2}{3x\left(x-2\right)\left(x+2\right)}-\frac{6x\left(x+2\right)}{3x\left(x-2\right)\left(x+2\right)}+\frac{3x\left(x-2\right)}{3x\left(x-2\right)\left(x+2\right)}\right]:\left[\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right]\)

\(=\frac{3x^2-6x^2-12x+3x^2-6x}{3x\left(x-2\right)\left(x+2\right)}:\frac{x^2-4+10-x^2}{x+2}\)

\(=\frac{-18x}{3x\left(x-2\right)\left(x+2\right)}\cdot\frac{x+2}{6}\)

\(=\frac{-3x}{3x\left(x-2\right)}=\frac{-1}{x-2}\)

b, Ta có: \(\left|x\right|=\frac{1}{2}\Rightarrow x=\pm\frac{1}{2}\)

Với \(x=\frac{1}{2}\) thì \(A=\frac{-1}{\frac{1}{2}-2}=\frac{-1}{\frac{-3}{2}}=\frac{2}{3}\)

Với \(x=\frac{-1}{2}\)thì \(A=\frac{-1}{\frac{-1}{2}-2}=\frac{-1}{\frac{-5}{2}}=\frac{2}{5}\)

c, Để A=2 <=> \(\frac{-1}{x-2}=2\Leftrightarrow-1=2x-4\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Vậy x=3/2 thì A=2

d, Để A<0 <=> \(\frac{-1}{x-2}< 0\Leftrightarrow x-2>0\Leftrightarrow x>2\)

Vậy với x>2 thì A<0

e, Để A thuộc Z <=> x-2 thuộc Ư(-1)={1;-1}

Ta có: x-2=1 => x=3 (t/m)

          x-2=-1 => x=1 (t/m)

Vậy x thuộc {3;1} thì A thuộc Z

26 tháng 6 2018

a)  \(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)(ĐKXĐ: x khác 0; + 2)

\(A=\left(\frac{x^2}{x\left(x^2-4\right)}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right)\)

\(A=\left(\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{2x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}\right):\frac{6}{x+2}\)

\(A=\frac{-6x}{x\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}=\frac{-x}{x\left(x-2\right)}=\frac{1}{2-x}.\)

Vậy \(A=\frac{1}{2-x}.\)

b) \(\left|x\right|=\frac{1}{2}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\). Nếu \(x=\frac{1}{2}\)thì \(A=\frac{1}{2-\frac{1}{2}}=\frac{2}{3}.\)

Nếu \(x=-\frac{1}{2}\)thì \(A=\frac{1}{2+\frac{1}{2}}=\frac{2}{5}.\)Vậy ...

c) Để A=2 thì \(\frac{1}{2-x}=2\Rightarrow4-2x=1\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}.\)Vậy ...

d) Để A<0 thì \(\frac{1}{2-x}< 0\Rightarrow2-x< 0\Leftrightarrow x>2.\)Vậy ...

e) Để A thuộc Z thì \(\frac{1}{2-x}\in Z\Rightarrow1⋮2-x\). Mà 2-x thuộc Z (Do x thuộc Z)

Nên \(2-x\in\left\{1;-1\right\}\Rightarrow x\in\left\{1;3\right\}.\)(t/m ĐKXĐ)

Vậy x=1 hay x=3 thì A nguyên.

14 tháng 8 2018

khó quá tui ko biết làm..

k cho tui nha

thanks

13 tháng 6 2016

\(A=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}-\frac{3x+1-x^2}{3x}\)

\(\left(DK:x\ne0;x\ne-1;x\ne\frac{1}{2}\right)\)

\(=\frac{\left(x+2\right)\left(x+1\right)+6x-9x\left(x+1\right)}{3x\left(x+1\right)}.\frac{x+1}{2\left(1-2x\right)}+\frac{x^2-3x-1}{3x}\)

\(=\frac{x^2+3x+2+6x-9x^2-9x}{3x}.\frac{1}{2\left(1-2x\right)}+\frac{x^2-3x-1}{3x}\)

\(=\frac{-8x^2+2}{6x}.\frac{1}{1-2x}+\frac{x^2-3x-1}{3x}=\frac{-2\left(4x^2-1\right)}{6x}.\frac{1}{1-2x}+\)\(\frac{x^2-3x-1}{3x}\)

\(\frac{\left(1-2x\right)\left(1+2x\right)}{3x\left(1-2x\right)}+\frac{x^2-3x-1}{3x}=\frac{x^2-3x-1+1+2x}{3x}=\)\(=\frac{x\left(x-1\right)}{3x}=\frac{x-1}{3}\)

13 tháng 6 2016

a)\(A=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}-\frac{3x+1-x^2}{3x}\left(DK:x\ne0;x\ne-1;x\ne\frac{1}{2}\right)\)

\(=\frac{\left(x+2\right)\left(x+1\right)+6x-9x\left(x+1\right)}{3x\left(x+1\right)}.\frac{x+1}{2\left(1-2x\right)}+\frac{x^2-3x-1}{3x}\)

\(=\frac{x^2+3x+2+6x-9x^2-9x}{3x}.\frac{1}{2\left(1-2x\right)}+\frac{x^2-3x-1}{3x}\)

\(=\frac{-8x^2+2}{6x}.\frac{1}{1-2x}+\frac{x^2-3x-1}{3x}=\frac{-2\left(4x^2-1\right)}{6x}.\frac{1}{1-2x}+\frac{x^2-3x-1}{3x}\)

\(\frac{\left(1-2x\right)\left(1+2x\right)}{3x\left(1-2x\right)}+\frac{x^2-3x-1}{3x}=\frac{x^2-3x-1+1+2x}{3x}=\frac{x\left(x-1\right)}{3x}=\frac{x-1}{3}\)

b) \(\left|x\right|=\frac{1}{3}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\left(x\ge0\right)\\x=-\frac{1}{3}\left(x< 0\right)\end{cases}}\)

Thay vào \(\frac{x-1}{3}\)tính được A.

c) \(A< 0\Rightarrow\frac{x-1}{3}< 0\Rightarrow x-1< 0\Rightarrow x< 1\)

Kết hợp cùng với điều kiện của ở phần rút gọn.

d) \(A\in Z\Rightarrow\frac{x-1}{3}\in Z\Rightarrow x=3k+1\)(\(k\in Z\))

10 tháng 5 2020

\(P=\left(\frac{x+1}{x-2}-\frac{2x}{x+2}+\frac{5x+2}{4-x^2}\right):\frac{3x-x^2}{x^2+4x+4}\)

\(P=\frac{x^2+2x+x+2-2x^2+4x-5x-2}{\left(x-2\right)\left(x+2\right)}\cdot\frac{\left(x+2\right)^2}{3x-x^2}\)

\(P=\frac{-x^2+2x}{x-2}\cdot\frac{x+2}{x\left(3-x\right)}\)

\(P=\frac{-x\left(x-2\right)}{x-2}\cdot\frac{x+2}{x\left(3-x\right)}\)

\(P=\frac{x+2}{x-3}\)

10 tháng 5 2020

Để \(|P|=2\) thì \(|\frac{x+2}{x-3}|=2\)\(\left(1\right)\)

\(\text{TH1}:\)\(\frac{x+2}{x-3}\ge0\)\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x\ge-2\\x\ge3\end{cases}}\\\hept{\begin{cases}x\le-2\\x\le3\end{cases}}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x\ge-2;x\ge3\\x\le-2;x\le3\end{cases}\Leftrightarrow\orbr{\begin{cases}x\ge3\\x\le-2\end{cases}}}\)

Kêt hợp với đk để P tồn tại:  \(\hept{\begin{cases}x\ne0\\x\ne3\\x\ne\pm2\end{cases}}\)

Vậy với đk \(\orbr{\begin{cases}x>3\\x< -2\end{cases}}\)thì \(\left(1\right)\)\(\Leftrightarrow\frac{x+2}{x-3}=2\Leftrightarrow x+2=2x-6\Leftrightarrow x=8\left(\text{TMĐK}\right)\)

\(\text{TH2}:\) \(\frac{x+2}{x-3}< 0\)\(\Leftrightarrow\orbr{\begin{cases}x>-2;x< 3\\x< -2;x>3\left(\text{vôlí}\right)\end{cases}}\)\(\Leftrightarrow-2< x< 3\)

thì \(\left(1\right)\)\(\Leftrightarrow\frac{x+2}{x-3}=-2\Leftrightarrow x+2=-2x+6\Leftrightarrow3x=4\Leftrightarrow x=\frac{4}{3}\left(\text{TMĐK}\right)\)

\(\text{Kết luận: Để |P|=2 thì x=8;x=4/3}\)

30 tháng 1 2019

Câu 3 : 

\(a,A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\frac{2x}{5x-5}\)  ĐKXđ : \(x\ne\pm1\)

\(A=\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\right):\frac{2x}{5\left(x-1\right)}\)

\(A=\left(\frac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{5\left(x-1\right)}{2x}\)

\(A=\frac{4x}{\left(x-1\right)\left(x+1\right)}.\frac{5\left(x-1\right)}{2x}\)

\(A=\frac{10}{x+1}\)

30 tháng 1 2019

\(B=\left(\frac{x}{3x-9}+\frac{2x-3}{3x-x^2}\right).\frac{3x^2-9x}{x^2-6x+9}.\)

ĐKXđ : \(x\ne0;x\ne3\)

\(B=\left(\frac{x}{3\left(x-3\right)}+\frac{2x-3}{x\left(3-x\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)

\(B=\left(\frac{x^2}{3x\left(x-3\right)}+\frac{9-6x}{3x\left(x-3\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)

\(B=\frac{x^2-6x+9}{3x\left(x-3\right)}.\frac{3x\left(x-3\right)}{x^2-6x+9}=1\)