Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,N=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\left(x-y\right)\left(x^4-y^4\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\\ N=\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x+y\right)}=x^2+y^2\\ b,N=\left(x+y\right)^2-2xy=0-2\cdot1=-2\)
a)\(N=\left(\frac{x^2}{x^2-y^2}+\frac{y}{x-y}\right):\frac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\)
\(=\left(\frac{x^2}{\left(x-y\right)\left(x+y\right)}+\frac{xy+y^2}{\left(x-y\right)\left(x+y\right)}\right):\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x^4-y^4\right)\left(x-y\right)}\)
\(=\frac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}:\frac{\left(x^2+xy+y^2\right)}{x^4-y^4}\)
\(=\frac{x^4-y^4}{\left(x-y\right)\left(x+y\right)}\)
\(=\frac{\left(x^2+y^2\right)\left(x^2-y^2\right)}{x^2-y^2}=x^2+y^2\)
b) Ta có: \(x+y=\frac{1}{40}\)
\(\Rightarrow\left(x+y\right)^2=\frac{1}{1600}\)
\(\Rightarrow x^2+2xy+y^2=\frac{1}{1600}\)
\(\Rightarrow x^2-\frac{1}{40}+y^2=\frac{1}{1600}\)
\(\Rightarrow x^2+y^2=\frac{1}{1600}+\frac{1}{40}\)
\(\Rightarrow x^2+y^2=\frac{41}{1600}\)
Vậy \(N=\frac{41}{1600}\)
P=(\(\dfrac{x^2}{x^2-y^2}+\dfrac{y\left(x+y\right)}{x^2-y^2}\)):\(\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^4-y^4\right)}\)
P=\(\dfrac{X^2+xy+y^2}{x^2-y^2}\).\(\dfrac{\left(x^2-y^2\right)\left(x^2+y^2\right)}{x^2+xy+y^2}\)
P=x^2+y^2=(x+y)^2-2xy=5^2-(-1)=26
Theo bài ra , ta có :
\(P=\left(\dfrac{x^2}{x^2-y^2}+\dfrac{y}{x-y}\right):\dfrac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\)ĐKXĐ \(x\ne\pm y\)
\(\Leftrightarrow P=\left(\dfrac{x^2}{\left(x-y\right)\left(x+y\right)}+\dfrac{y\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}\right):\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{x^4\left(x-y\right)-y^4\left(x-y\right)}\)
\(\Leftrightarrow P=\left(\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}\right):\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^4-y^4\right)}\)
\(\Leftrightarrow P=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}\times\dfrac{\left(x-y\right)\left(x^4-y^4\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(\Leftrightarrow P=\dfrac{x^4-y^4}{\left(x-y\right)\left(x+y\right)}\)\(\Leftrightarrow P=\dfrac{\left(x^2\right)^2-\left(y^2\right)^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{\left(x^2-y^2\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x+y\right)}=x^2+y^2\)(1)
Ta có : \(x+y=5\Rightarrow\left(x+y\right)^2=25\Rightarrow x^2+y^2=25-2xy=25--1=26\)(Vì xy = -1/2)
Thay x2 + y2 = 26 vào (1) ta đk : P = 26
Vậy P = 26 khi x + y = 5 và xy = -1/2
\(P=\left(\dfrac{x^2+y\left(x+y\right)}{\left(x^2-y^2\right)}\right).\left(\dfrac{x^4\left(x-y\right)-y^4\left(x-y\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\right)\\ \)
\(P=\left(\dfrac{x^2+xy+y^2}{\left(x^2-y^2\right)}\right).\dfrac{\left(x^2-y^2\right)\left(x^2+y^2\right)}{\left(x^2+xy+y^2\right)}\)
\(P=x^2+y^2=\left(x+y\right)^2-2xy=25-2\left(-\dfrac{1}{2}\right)=26\)
ĐKXĐ: \(...\)
\(P=\dfrac{2}{x}-\left(\dfrac{x^2}{x\left(x+y\right)}-\dfrac{y^2}{y\left(x+y\right)}+\dfrac{y^2-x^2}{xy}\right).\dfrac{x+y}{x^2+xy+y^2}\)
\(P=\dfrac{2}{x}-\left(\dfrac{x-y}{x+y}-\dfrac{\left(x-y\right)\left(x+y\right)}{xy}\right).\dfrac{x+y}{x^2+xy+y^2}\)
\(P=\dfrac{2}{x}-\left(\dfrac{1}{x+y}-\dfrac{x+y}{xy}\right)\dfrac{x^2-y^2}{x^2+xy+y^2}\)
\(P=\dfrac{2}{x}-\dfrac{-\left(x^2+xy+y^2\right)}{xy\left(x+y\right)}.\dfrac{\left(x-y\right)\left(x+y\right)}{x^2+xy+y^2}\)
\(P=\dfrac{2}{x}+\dfrac{x-y}{xy}=\dfrac{2}{x}+\dfrac{1}{y}-\dfrac{1}{x}=\dfrac{1}{x}+\dfrac{1}{y}\)
b/ \(x^2+y^2+10=2x-6y\Leftrightarrow x^2-2x+1+y^2+6y+9=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+3\right)^2=0\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
\(\Rightarrow P=\dfrac{1}{1}-\dfrac{1}{3}=\dfrac{2}{3}\)
\(a,\frac{x}{xy-y^2}+\frac{2x-y}{xy-x^2}:\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(=\left(\frac{x}{y\left(x-y\right)}+\frac{y-2x}{x\left(x-y\right)}\right):\left(\frac{y}{xy}+\frac{x}{xy}\right)\)
\(=\left(\frac{x-y}{x\left(x-y\right)}\right):\left(\frac{x+y}{xy}\right)\)
\(=\frac{1}{x}.\frac{xy}{x+y}=\frac{y}{x+y}\)
ĐKXĐ: \(x\ne y\)
a) \(N=\dfrac{x^2+y\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}:\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{x^4\left(x-y\right)-y^4\left(x-y\right)}=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}.\dfrac{\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}=x^2+y^2\)
b) \(x+y=0\Leftrightarrow\left(x+y\right)^2=0\Leftrightarrow x^2+y^2-2xy=0\)
\(\Leftrightarrow N=x^2+y^2=0+2xy=2.1=2\)
Sửa lại ĐKXĐ là \(x\ne\pm y\) nha