Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(M=1+3+3^2+3^3+...+3^{119}\)
\(3M=3+3^2+3^3+3^4+...+3^{119}+3^{120}\)
\(3M-M=\left(3+3^2+3^3+...+3^{120}\right)-\left(1+3+3^2+...+3^{119}\right)\)
\(2M=3^{120}-1\)
\(M=\frac{3^{120}-1}{2}\)
b) \(M=1+3+3^2+3^3+...+3^{118}+3^{119}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{117}+3^{118}+3^{119}\right)\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{117}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{117}\right)\)chia hết cho \(13\).
\(M=1+3+3^2+3^3+...+3^{118}+3^{119}\)
\(=\left(1+3+3^2+3^3\right)+...+\left(3^{116}+3^{117}+3^{118}+3^{119}\right)\)
\(=\left(1+3+3^2+3^3\right)+...+3^{116}\left(1+3+3^2+3^3\right)\)
\(=40\left(1+3^4+...+3^{116}\right)\)chia hết cho \(5\).
1. Ta có:
3A = 3^2 + 3^3+3^4+...+3^101
=> 3A-A= (3^2+3^3+3^4+...+3^101) - (3+3^2+3^3+...+3^100)
<=> 2A= 3^101-3
=> 2A +3 = 3^101
Mà 2A+3=3^n
=> 3^101 = 3^n => n=101
2. M=3+32+33+34+...+3100
=>3M=32+33+34+35+...+3101
=>3M-M= 3101-3 ( chỗ này bạn tự làm được nhé)
=> M=\(\frac{3^{101}-3}{2}\)
a) Ta co : 3101=(34)25 .3=8125.3
Bạn học đồng dư thức rồi thì xem:
Vì 81 đồng dư với 1 (mod 8) => 8125 đồng dư với 1 (mod 8)=> 8125.3 đồng dư với 1.3=3(mod 8)
=> 8125.3-3 đồng dư với 3-3=0 (mod 8)=> 8125.3-3 chia hết cho 8
=>\(\frac{81^{25}.3-3}{2}\)chia hết cho 4=> M chia hết cho 4 (1)
Ma M=3101-3 chia hết cho 3 (2)
Từ (1) và (2) => M chia hết cho 12
b)\(2\left(\frac{3^{101}-3}{2}\right)+3=3^n\)
=> 3101-3 +3 =3n
=> 3101=3n=> n = 101
M=(5+5^2)+(5^3+5^4)+...+(5^98+5^99)
M=5(1+5)+5^3(1+5)+...+5^98(1+5)
M=6(5+5^3+...+5^98) chia hết cho 6
Luy ý ^ là mủ
a)\(M=5+5^2+5^3+5^4+...+5^{79}+5^{80}\)(có 80 số hạng)
\(M=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{79}+5^{80}\right)\)(có 40 nhóm)
\(M=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{79}\left(1+5\right)\)
\(M=5\cdot6+5^3\cdot6+...+5^{79}\cdot6\)
\(M=6\left(5+5^3+...+5^{79}\right)⋮6\)
a) M = 5 + 52 + 53 + ... + 580 (có 80 số hạng; 80 chia hết cho 2)
M = (5 + 52) + (53 + 54) + ... + (579 + 580)
M = 5.(1 + 5) + 53.(1 + 5) + ... + 579.(1 + 5)
M = 5.6 + 53.6 + ... + 579.6
M = 6.(5 + 53 + ... + 579) chia hết cho 6
Chứng tỏ M chia hết cho 6
b) Ta thấy các lũy thừa của 5 từ 52 trở đi đều chia hết cho 5 và 25
=> 52; 53; ...; 580 đều chia hết cho 5 và 25
Mà 5 chia hết cho 5 nhưng không chia hết cho 25
=> M chia hết cho 25 nhưng không chia hết cho 25, không phải số chính phương
Chứng tỏ M không phải số chính phương
a. Ta có: M = 5 + 52 + 53 + ...+ 580
= 5 + 52 + 55 + ... + 580 = (5 + 52) + (53 + 54) + (55 + 56) + ... + (579 + 580)
= (5 + 52) + 52 . (5 + 52) + ... + 578(5 + 52)
= 30 + 30 . 52 + 30 . 54 + ... + 30 . 578 = 30(1 + 52 + 54 + ... + 578) chia hết cho 30
b. Ta thấy : M = 5 + 52 + 53 + ... + 580 cchia hết cho số nguyên tố 5
Mặt khác, do: 52 + 53 + ... 580 chia hết cho 52 (vì tất cả các số hạng đều chia hết cho 52)
=> M = 5 + 52 + 53 + ... + 580 không chia hết cho 52 (do 5 không chia hết cho 52)
=> M chia hết cho 5 nhưng không chia hết cho 52
=> M không phải số chính phương
a) M= 5+5^2+5^3+.....+5^80
M=5^1×1+5^1×5+5^3×1+5^3×5+...+5^79×1+5^79×5
M=5^1×(1+5)+5^3×(1+5)+...+5^79×(1+5)
M=5^1×6+5^3×6+...5^79×6
M=6×(5^1+5^3+...+5^79
Có 6 chia hết cho 6 nênM chia hết cho 6
b)M không là số chính phương vì có 6 chia hết cho 6 nhưng không chia hết cho 36 nên M không là số chính phương
a) M= (5+52+53+54)+...+(577+578+579+580)
M=5(1+5+52+53)+...+577(1+5+52+53)
M=5*156+...+577*156
M=5*(26*6)+...+577*(26*6)
Vậy M chia hết cho 6
b) Tôi không biết thông cảm nhé
a/ \(M=1+3+3^2+.....+3^{119}\)
\(\Leftrightarrow3M=3+3^2+.....+3^{119}+3^{120}\)
\(\Leftrightarrow3M-M=\left(3+3^2+.....+3^{120}\right)-\left(1+3+....+3^{119}\right)\)
\(\Leftrightarrow2M=3^{120}-1\)
\(\Leftrightarrow M=\dfrac{3^{120}-1}{2}\)
b/ \(M=1+3+3^2+..........+3^{119}\)
\(=\left(1+3+3^2\right)+........+\left(3^{117}+3^{118}+3^{119}\right)\)
\(=1\left(1+3+3^2\right)+........+3^{117}\left(1+3+3^2\right)\)
\(=1.13+.....+3^{117}.13\)
\(=13\left(1+.....+3^{117}\right)⋮13\Leftrightarrow M⋮13\left(đpcm\right)\)
còn chia hết cho 5 không nữa mà bạn