K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2018

Ta có B = x x + x + 1 x − 1 x + x + 1 + x + 3 x − 1 . x − 1 2 x + x − 1

= x x − 1 + x + 3 x − 1 . x − 1 x + 1 2 x − 1 x + 1 = 2 x + 3 x − 1 . x − 1 2 x − 1 = 2 x + 3 2 x − 1    

 

x ≥ 0  nên  2 x + 3 > 0 , do đó B<0 khi  2 x − 1 < 0 ⇔ x < 1 4 .

Mà  x ≥ 0 ;   x ≠ 1  và  x ≠ 1 4  nên ta được kết quả  0 ≤ x < 1 4 .

8 tháng 4 2021

a, Ta có : \(x=4\Rightarrow\sqrt{x}=2\)

\(\Rightarrow A=\frac{2+1}{2+2}=\frac{3}{4}\)

Vậy với x = 4 thì A = 3/4 

b, \(B=\frac{3}{\sqrt{x}-1}-\frac{\sqrt{x}+5}{x-1}=\frac{3\left(\sqrt{x}+1\right)-\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{3\sqrt{x}+3-\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2}{\sqrt{x}+1}\)( đpcm )

31 tháng 12 2023

a: Thay x=49 vào A, ta được:

\(A=\dfrac{2\cdot7+1}{7-3}=\dfrac{14+1}{4}=\dfrac{15}{4}\)

b: \(B=\dfrac{2x+36}{x-9}-\dfrac{9}{\sqrt{x}-3}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

\(=\dfrac{2x+36}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{9}{\sqrt{x}-3}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

\(=\dfrac{2x+36-9\left(\sqrt{x}+3\right)-\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2x+36-9\sqrt{x}-27-x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-6\sqrt{x}+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)

c: \(P=A\cdot B=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{2\sqrt{x}+1}{\sqrt{x}+3}\)

P>1 khi P-1>0

=>\(\dfrac{2\sqrt{x}+1-\sqrt{x}-3}{\sqrt{x}+3}>0\)

=>\(\sqrt{x}-2>0\)

=>\(\sqrt{x}>2\)

=>x>4

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}x>4\\x\ne9\end{matrix}\right.\)

28 tháng 10 2023

a: \(B=\dfrac{1}{\sqrt{x}-2}-\dfrac{\sqrt{x}}{4-x}\)

\(=\dfrac{1}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}+2+\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{2\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

Khi x=16 thì \(B=\dfrac{2\cdot4+2}{\left(4-2\right)\left(4+2\right)}=\dfrac{10}{2\cdot6}=\dfrac{10}{12}=\dfrac{5}{6}\)

b: P=B/A

\(=\dfrac{2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\dfrac{2}{\sqrt{x}+2}\)

\(=\dfrac{2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+2}{2}=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)

c: P<1

=>P-1<0

=>\(\dfrac{\sqrt{x}+1-\sqrt{x}+2}{\sqrt{x}-2}< 0\)

=>\(\dfrac{3}{\sqrt{x}-2}< 0\)

=>\(\sqrt{x}-2< 0\)

=>\(\sqrt{x}< 2\)

=>0<=x<4

mà x nguyên

nên \(x\in\left\{0;1;2;3\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{0;1;2;3\right\}\)

a: Thay x=2 vào B, ta được:

\(B=\dfrac{2}{\sqrt{2}-1}=2\sqrt{2}+2\)

 

8 tháng 4 2021

a,Ta có  \(x=4-2\sqrt{3}=\sqrt{3}^2-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)

\(\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1\)do \(\sqrt{3}-1>0\)

\(\Rightarrow A=\frac{1}{\sqrt{3}-1-1}=\frac{1}{\sqrt{3}-2}\)

b, Với \(x\ge0;x\ne1\)

 \(B=\left(\frac{-3\sqrt{x}}{x\sqrt{x}-1}-\frac{1}{1-\sqrt{x}}\right):\left(1-\frac{x+2}{1+\sqrt{x}+x}\right)\)

\(=\left(\frac{-3\sqrt{x}+x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\left(\frac{x+\sqrt{x}+1-x-2}{x+\sqrt{x}+1}\right)\)

\(=\left(\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}-1}{x+\sqrt{x}+1}\right)\)

\(=\frac{\sqrt{x}-1}{x+\sqrt{x}+1}.\frac{x+\sqrt{x}+1}{\sqrt{x}-1}=1\)

Vậy biểu thức ko phụ thuộc biến x 

c, Ta có : \(\frac{2A}{B}\)hay \(\frac{2}{\sqrt{x}-1}\)để biểu thức nhận giá trị nguyên 

thì \(\sqrt{x}-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

\(\sqrt{x}-1\)1-12-2
\(\sqrt{x}\)203-1 
x409vô lí 
13 tháng 4 2021
AH
Akai Haruma
Giáo viên
4 tháng 6 2022

Lời giải:

$5A+B=\frac{5\sqrt{x}+1}{2\sqrt{x}+1}$

$2(5A+B)=\frac{10\sqrt{x}+2}{2\sqrt{x}+1}=\frac{5(2\sqrt{x}+1)-3}{2\sqrt{x}+1}=5-\frac{3}{2\sqrt{x}+1}$

$5A+B$ nguyên 

$\Rightarrow 2(5A+B)$ nguyên 

$\Leftrightarrow 5-\frac{3}{2\sqrt{x}+1}$ nguyên 

$\Leftrightarrow \frac{3}{2\sqrt{x}+1}$ nguyên 

Ta thấy: $\frac{3}{2\sqrt{x}+1}\leq 3$ với mọi $x\geq 0$ và $\frac{3}{2\sqrt{x}+1}>0$ với mọi $x\geq 0$

Do đó $\frac{3}{2\sqrt{x}+1}$ nguyên thì nhận các giá trị $1,2,3$

$\Leftrightarrow x=0; \frac{1}{16}; 1$

Ta có: \(P=\dfrac{4\sqrt{x}+3}{x+\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\dfrac{4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{x}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}+3}{\sqrt{x}}\)

Để P nguyên thì \(\sqrt{x}+3⋮\sqrt{x}\)

mà \(\sqrt{x}⋮\sqrt{x}\)

nên \(3⋮\sqrt{x}\)

\(\Leftrightarrow\sqrt{x}\inƯ\left(3\right)\)

\(\Leftrightarrow\sqrt{x}\in\left\{1;-1;3;-3\right\}\)

mà \(\sqrt{x}>0\forall x\) thỏa mãn ĐKXĐ

nên \(\sqrt{x}\in\left\{1;3\right\}\)

\(\Leftrightarrow x\in\left\{1;9\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{1;9\right\}\)

Vậy: Để P nguyên thì \(x\in\left\{1;9\right\}\)

AH
Akai Haruma
Giáo viên
5 tháng 9 2023

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.

5 tháng 9 2023

vâng ạ

AH
Akai Haruma
Giáo viên
17 tháng 11 2021

Lời giải:
a. \(B=\frac{3(\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+1)}-\frac{\sqrt{x}+5}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{3(\sqrt{x}+1)-(\sqrt{x}+5)}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{2(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{2}{\sqrt{x}+1}\)

b.

\(P=2AB+\sqrt{x}=2.\frac{\sqrt{x}+1}{\sqrt{x}+2}.\frac{2}{\sqrt{x}+1}+\sqrt{x}=\frac{4}{\sqrt{x}+2}+\sqrt{x}\)

Áp dụng BĐT Cô-si:

$P=\frac{4}{\sqrt{x}+2}+(\sqrt{x}+2)-2\geq 2\sqrt{4}-2=2$

Vậy $P_{\min}=2$ khi $\sqrt{x}+2=2\Leftrightarrow x=0$