Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(P=\left(\dfrac{-\left(x+3\right)}{x-3}+\dfrac{x-3}{x+3}+\dfrac{4x^2}{x^2-9}\right):\dfrac{2x+1-x-3}{x+3}\)
\(=\dfrac{-x^2-6x-9+x^2-6x+9+4x^2}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x-2}\)
\(=\dfrac{4x^2-12x}{x-3}\cdot\dfrac{1}{x-2}=\dfrac{4x}{x-2}\)
b: \(2x^2-5x+2=0\)
=>(x-2)(2x-1)=0
=>x=1/2
Thay x=1/2 vào P, ta được:
\(P=\left(4\cdot\dfrac{1}{2}\right):\left(\dfrac{1}{2}-2\right)=2:\dfrac{-3}{2}=\dfrac{-4}{3}\)
a: \(C=\left(\dfrac{2}{x+2}-\dfrac{x}{\left(x-2\right)\left(x+2\right)}+\dfrac{1}{x-2}\right):\dfrac{x^2-4+6-x^2}{x-2}\)
\(=\dfrac{2x-4-x+x+2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x-2}{2}\)
\(=\dfrac{2x-2}{x+2}\cdot\dfrac{1}{2}=\dfrac{x-1}{x+2}\)
b: Khi x=1 thì \(C=\dfrac{1-1}{1+2}=0\)
Khi x=-1 thì \(C-\dfrac{-1-1}{-1+2}=-2\)
c: Để C là số nguyên thì \(x+2-3⋮x+2\)
\(\Leftrightarrow x+2\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{-1;-3;1;-5\right\}\)
Lời giải:
a)
$A=B\Leftrightarrow (x-3)(x+4)-2(3x-2)=(x-4)^2$
$\Leftrightarrow x^2+x-12-6x+4=x^2-8x+16$
$\Leftrightarrow 3x=24\Leftrightarrow x=8$
b)
$A=B\Leftrightarrow (x+2)(x-2)+3x^2=(2x+1)^2+2x$
$\Leftrightarrow x^2-4+3x=4x^2+6x+1$
$\Leftrightarrow 3x^2+3x+5=0$
$\Leftrightarrow 3(x+\frac{1}{2})^2=\frac{-17}{4}< 0$ (vô lý)
Do đó k có giá trị nào của $x$ để $A=B$
c)
$A=B\Leftrightarrow (x-1)(x^2+x+1)-2x=x(x-1)(x+1)$
$\Leftrightarrow x^3-1-2x=x(x^2-1)=x^3-x$
$\Leftrightarrow x=-1$
d)
$A=B\Leftrightarrow (x+1)^3-(x-2)^3=(3x-1)(3x+1)$
$\Leftrightarrow [(x+1)-(x-2)][(x+1)^2+(x+1)(x-2)+(x-2)^2]=9x^2-1$
$\Leftrightarrow 3(x^2+2x+1+x^2-x-2+x^2-4x+4)=9x^2-1$
$\Leftrightarrow 3(3x^2-3x+3)=9x^2-1$
$\Leftrightarrow -9x=-10\Leftrightarrow x=\frac{10}{9}$
\(B=\left(\dfrac{x+3}{x-3}+\dfrac{2x^2-6}{9-x^2}+\dfrac{x}{x+3}\right):\left(\dfrac{6x-12}{2x^2-18}\right)\) (1)
a ) ĐKXĐ : \(x\ne\pm3\)
\(\left(1\right)\Rightarrow B=\left(\dfrac{x+3}{x-3}+\dfrac{2x^2-6}{\left(x-3\right)\left(x+3\right)}+\dfrac{x}{x+3}\right):\left(\dfrac{6x-12}{2\left(x-3\right)\left(x+3\right)}\right)\)
\(\Leftrightarrow B=\left(\dfrac{x^2+6x+9-2x^2+6+x^2-3x}{\left(x-3\right)\left(x+3\right)}\right).\left(\dfrac{2\left(x-3\right)\left(x+3\right)}{6x-12}\right)\)
\(\Leftrightarrow B=\left(\dfrac{3x+15}{\left(x-3\right)\left(x+3\right)}\right)\left(\dfrac{2\left(x-3\right)\left(x+3\right)}{6x-12}\right)\)
\(\Leftrightarrow B=\dfrac{6x+30}{6x-12}\)
b ) \(\left|x+1\right|=2\Leftrightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Khi x = 1 => \(B=\dfrac{6.1+30}{6.1-12}=-6\)
Khi \(x=-3\Rightarrow B=\dfrac{6.\left(-3\right)+30}{6.\left(-3\right)-12}=-\dfrac{2}{5}\)
c ) Ta có : \(B=\dfrac{6x+30}{6x-12}=\dfrac{6x-12+42}{6x-12}=1+\dfrac{42}{6x-12}\)
=> Để B nguyên thì \(42⋮6x-12\) \(\Rightarrow6x-12\inƯ\left(42\right)\)
Thay từng cái rồi tính .
1,A=(x2-6x+9)+2
=(x-3)2+2
ta thấy (x-3)2>=0 với mọi x
=>(x-3)2+2>=2 với mọi x
hay A>=2
dấu "="xảy ra x-3=0<=>x=3
vậy MinA=2 khi x=3
ý b sai đầu bài bạn nhé
C=-(x2-5x)
=-(x2-5x+25/4)+25/4
=-(x-5/2)2+25/4
ta thấy -(x-5/2)2<=0 với mọi x
=>-(x-5/2)2+25/4 <=25/4 với mọi x
hay C<=25/4
dấu "=" xảy ra khi x-5/2=0<=>x=5/2
vậy MaxC=25/4 khi x=5/2
k mk nha