K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2016

A = (2+22+23+24)+...+(22013+22014+22015+22016)

A=2 x (1+2+22)+...+22013 x (1+2+22)

A=2 x 7 +...+ 22013 x 7

A=7 x (2+...+22013)

vì 7chia hết cho 7 nên 7 x (2+...+22013)

vậy A chia hết cho 7

6 tháng 7 2016
  • vì những số chia hot cho7 có dạng 7*k nên A chia hết cho 7vi:

 dạng 7*k=A=<2+22+23>+...

A=14+<..>+...

A=7*2+...

24 tháng 4 2017

\(A=2^{2011}+2^{2012}+2^{2013}+2^{2014}+2^{2015}+2^{2016}\)

\(=2^{2011}\cdot\left(1+2+2^2+2^3+2^4+2^5\right)\)

\(=2^{2011}\cdot63⋮21\)(vì \(63⋮21\))

Vậy \(A⋮21\left(đpcm\right)\)

24 tháng 4 2017

thank you verymuch

14 tháng 12 2018

Sai đề rồi bạn nhé

14 tháng 12 2018

Đó là đề ôn của mình mà

28 tháng 11 2016

Ta có:A=(2+22+23)+(24+25+26)+..+(22014+22015+22016)

A=2(1+21+22)+24(1+21+22)+...+22014(1+21+22)

A=2.7+24.7+...+22014.7=7(2+24+...+22014)

Suy ra A chia het cho 7

Vậy A chia hết cho 7

18 tháng 12 2017

\(A=2+2^2+2^3+2^4+...+2^{2014}+2^{2015}+2^{2016}\)

\(\Rightarrow A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2014}+2^{2015}+2^{2016}\right)\)

\(\Rightarrow A=2.\left(1+2+2^2\right)+2^4.\left(1+2+2^2\right)+...+2^{2014}.\left(1+2+2^2\right)\)

\(\Rightarrow A=2.7+2^4.7+...+2^{2014}.7\)

\(\Rightarrow A=7.\left(2+2^4+...+2^{2014}\right)\)

\(\Rightarrow A⋮7\)

4 tháng 10 2016

Bài 1:

a) Đặt A = 1 + 7 + 72 + 73 + ... + 72016

7A = 7 + 72 + 73 + 74 + ... + 72017

7A - A = (7 + 72 + 73 + 74 + ... + 72017) - (1 + 7 + 72 + 73 + ... + 72016)

6A = 72017 - 1

\(A=\frac{7^{2017}-1}{6}\)

b) Đặt B = 1 + 4 + 42 + 43 + ... + 42017

4B = 4 + 42 + 43 + 44 + ... + 42018

4B - B = (4 + 42 + 43 + 44 + ... + 42018) - (1 + 4 + 42 + 43 + ... + 42017)

3B = 42018 - 1

\(B=\frac{4^{2018}-1}{3}\)

Bài 2:

a) Ta có: \(14\equiv1\left(mod13\right)\)

\(\Rightarrow14^{14}\equiv1\left(mod13\right)\)

\(\Rightarrow14^{14}-1⋮13\left(đpcm\right)\)

b) Ta có: \(2015\equiv1\left(mod2014\right)\)

\(\Rightarrow2015^{2015}\equiv1\left(mod2014\right)\)

\(\Rightarrow2015^{2015}-1⋮2014\left(đpcm\right)\)

4 tháng 10 2016

Sorry mình thiếu 1+7+72+73+...+72016 câu dưới cũng thiếu 4 nha

 

15 tháng 10 2017

A = 4 + 22 + 23 + 24 + ... + 22014

\(\Rightarrow\) A - 4 = 22 + 23 + 24 + ... + 22014

\(\Rightarrow\) 2(A - 4) = 23 + 24 + 25 + ... + 22015

\(\Rightarrow\) 2(A - 4) - (A - 4) = (23 + 24 + 25 + ... + 22015) - (22 + 23 + 24 + ... + 22014)

\(\Rightarrow\) A - 4 = 22015 - 22 = 22015 - 4

\(\Rightarrow\) A = 22015 = 210 . 22005 = 1024 . 22005

Vì 1024 . 22005 \(⋮\) 1024 nên A \(⋮\) 1024

\(\Rightarrow\) ĐPCM