Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2^{2011}+2^{2012}+2^{2013}+2^{2014}+2^{2015}+2^{2016}\)
\(=2^{2011}\cdot\left(1+2+2^2+2^3+2^4+2^5\right)\)
\(=2^{2011}\cdot63⋮21\)(vì \(63⋮21\))
Vậy \(A⋮21\left(đpcm\right)\)
Ta có:A=(2+22+23)+(24+25+26)+..+(22014+22015+22016)
A=2(1+21+22)+24(1+21+22)+...+22014(1+21+22)
A=2.7+24.7+...+22014.7=7(2+24+...+22014)
Suy ra A chia het cho 7
Vậy A chia hết cho 7
\(A=2+2^2+2^3+2^4+...+2^{2014}+2^{2015}+2^{2016}\)
\(\Rightarrow A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2014}+2^{2015}+2^{2016}\right)\)
\(\Rightarrow A=2.\left(1+2+2^2\right)+2^4.\left(1+2+2^2\right)+...+2^{2014}.\left(1+2+2^2\right)\)
\(\Rightarrow A=2.7+2^4.7+...+2^{2014}.7\)
\(\Rightarrow A=7.\left(2+2^4+...+2^{2014}\right)\)
\(\Rightarrow A⋮7\)
Bài 1:
a) Đặt A = 1 + 7 + 72 + 73 + ... + 72016
7A = 7 + 72 + 73 + 74 + ... + 72017
7A - A = (7 + 72 + 73 + 74 + ... + 72017) - (1 + 7 + 72 + 73 + ... + 72016)
6A = 72017 - 1
\(A=\frac{7^{2017}-1}{6}\)
b) Đặt B = 1 + 4 + 42 + 43 + ... + 42017
4B = 4 + 42 + 43 + 44 + ... + 42018
4B - B = (4 + 42 + 43 + 44 + ... + 42018) - (1 + 4 + 42 + 43 + ... + 42017)
3B = 42018 - 1
\(B=\frac{4^{2018}-1}{3}\)
Bài 2:
a) Ta có: \(14\equiv1\left(mod13\right)\)
\(\Rightarrow14^{14}\equiv1\left(mod13\right)\)
\(\Rightarrow14^{14}-1⋮13\left(đpcm\right)\)
b) Ta có: \(2015\equiv1\left(mod2014\right)\)
\(\Rightarrow2015^{2015}\equiv1\left(mod2014\right)\)
\(\Rightarrow2015^{2015}-1⋮2014\left(đpcm\right)\)
Sorry mình thiếu 1+7+72+73+...+72016 câu dưới cũng thiếu 4 nha
A = 4 + 22 + 23 + 24 + ... + 22014
\(\Rightarrow\) A - 4 = 22 + 23 + 24 + ... + 22014
\(\Rightarrow\) 2(A - 4) = 23 + 24 + 25 + ... + 22015
\(\Rightarrow\) 2(A - 4) - (A - 4) = (23 + 24 + 25 + ... + 22015) - (22 + 23 + 24 + ... + 22014)
\(\Rightarrow\) A - 4 = 22015 - 22 = 22015 - 4
\(\Rightarrow\) A = 22015 = 210 . 22005 = 1024 . 22005
Vì 1024 . 22005 \(⋮\) 1024 nên A \(⋮\) 1024
\(\Rightarrow\) ĐPCM
A = (2+22+23+24)+...+(22013+22014+22015+22016)
A=2 x (1+2+22)+...+22013 x (1+2+22)
A=2 x 7 +...+ 22013 x 7
A=7 x (2+...+22013)
vì 7chia hết cho 7 nên 7 x (2+...+22013)
vậy A chia hết cho 7
dạng 7*k=A=<2+22+23>+...
A=14+<..>+...
A=7*2+...