K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2017

Ta có : 

\(\frac{2013}{2014}< 1\)( 1 )

\(\frac{2014}{2015}< 1\)( 2 )

\(\frac{2015}{2016}< 1\)( 3 )

từ ( 1 ) , ( 2 ) và ( 3 ) 

\(\Rightarrow\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}< 1+1+1=3\)

vậy A < 3

20 tháng 4 2017

Có: 2013/2014<2014/2014

      2014/2015<2015/2015

      2015/2016<2016/2016

=>2013/2014+2014/2015+2015/2016<2014/2014+2015/015+2016/2016

=>A<3

15 tháng 4 2016

A = \(\frac{2013}{2014}+\frac{2014}{2015}>\frac{1}{2}+\frac{1}{2}=1\)

\(B=\frac{2013+2014+2015}{2014+2015+2016}<1\)

\(Vậy:A>B\)

Đúng nha Nguyễn Bình Minh

5 tháng 6 2016

so sánh:

\(A=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}\)  và\(B=\) \(\frac{2013+2014+2015}{2014+2015+2016}\)

                                                             \(B=\frac{2013}{2014+2015+2016}+\frac{2014}{2014+2015+2016}+\frac{2015}{2014+2015+2016}\)

Ta có: \(\frac{2013}{2014}>\frac{2013}{2014+2015+2016}\)

          \(\frac{2014}{2015}>\frac{2014}{2014+2015+2016}\)

          \(\frac{2015}{2016}>\frac{2015}{2014+2015+2016}\)

\(\Rightarrow\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}>\frac{2013+2014+2015}{2014+2015+2016}\)

Vậy: \(A>B\)

7 tháng 5 2015

\(A=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2013}{2013}+\frac{1}{2013}+\frac{1}{2013}=\left(\frac{2013}{2014}+\frac{1}{2013}\right)+\left(\frac{2014}{2015}+\frac{1}{2013}\right)+1\)

Ta có: \(\frac{2013}{2014}+\frac{1}{2013}>\frac{2013}{2014}+\frac{1}{2014}=\frac{2014}{2014}=1\)

\(\frac{2014}{2015}+\frac{1}{2013}>\frac{2014}{2015}+\frac{1}{2015}=\frac{2015}{2015}=1\)

=> A > 1+ 1 + 1 = 3

22 tháng 8 2021

A=\(\dfrac{2013+2014}{2014+2015}=\dfrac{2013}{2014+2015}+\dfrac{2014}{2014+2015}\)

B=\(\dfrac{2013}{2014}+\dfrac{2014}{2015}\)

Vì \(\dfrac{2013}{2014}>\dfrac{2013}{2014+2015}\)\(\dfrac{2014}{2015}>\dfrac{2014}{2014+2015}\) nên B>A

1 tháng 9 2016

A = (n + 2015)(n + 2016) + n2 + n

(n + 2015)(n + 2015 + 1) + n(n + 1)

Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2

=> (n + 2015)(n + 2015 + 1) chia hết cho 2

      n(n + 1) chia hết cho 2

=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2

=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)

5 tháng 5 2016

Ta thấy:2013/2024<1

             2014/2025<1

             2015/2013>1

Để 2013/2024+2014/2025+2015+2013 lớn hơn hoặc bằng 3 <=>2013/2024,2014/2025,2015/2013 lớn hơn hoặc bằng 1 hoặc nếu 2013/2024<1 và 2014/2025<1=>2015/2013 phải lớn hơn hoặc bằng 2

Mà 2013/2024<1,2014/2025<1,2015/2013<2

=>A<3

5 tháng 5 2016

cho biểu thức A = 2013/2014+2014/2015+2015/2013.hãy so sánh Avới 3

(nhớ nói cách làm nha.từng bước)

24 tháng 1 2022

\(C=\dfrac{2013}{2013}+2014+\dfrac{2014}{2014}+2015+\dfrac{2015}{2015}+2016\)

\(=1+2014+1+2015+1+2016\)

\(=6048>2\)

Vậy: \(C>D\)

26 tháng 1 2022

sao bạn ghi 2013/2013+2014 = 2013/2013 + 2014 được vậy ???

 

19 tháng 6 2016

Có \(2004A=\frac{2014^{2015}+2014}{2014^{2015}+1}=\frac{2014^{2015}+1+2013}{2014^{2015}+1}=1+\frac{2013}{2014^{2015}+1}\)

 \(2014B=\frac{2014^{2014}+2014}{2014^{2014}+1}=\frac{2014^{2014}+1+2013}{2014^{2014}+1}=1+\frac{2013}{2014^{2014}+1}\)

 Vì \(\frac{2013}{2014^{2015}+1}< \frac{2013}{2014^{2014}+1}\)

=> \(1+\frac{2013}{2014^{2015}+1}< 1+\frac{2013}{2014^{2014}+1}\)

=> \(A< B\)

19 tháng 2 2022

SDFGHJI