K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2020

Cho biểu thức : A= ( 3/2x+4 + x/2-x + 2x^2+3/x^2-4 ) : (2x-1/4x-8)

a.Rút gọn A

b.Tìm giá trị của A biết |x - 1| = 3

c.Tìm x để A < 2

d.Tìm x để A = |1|

a) Ta có: \(A=\left(\dfrac{3}{2x+4}+\dfrac{x}{2-x}+\dfrac{2x^2+3}{x^2-4}\right):\dfrac{2x-1}{4x-8}\)

\(=\left(\dfrac{3\left(x-2\right)}{2\left(x+2\right)\left(x-2\right)}-\dfrac{2x\left(x+2\right)}{2\left(x+2\right)\left(x-2\right)}+\dfrac{2\left(2x^2+3\right)}{2\left(x-2\right)\left(x+2\right)}\right):\dfrac{2x-1}{4x-8}\)

\(=\dfrac{3x-6-2x^2-4x+4x^2+6}{2\left(x+2\right)\left(x-2\right)}\cdot\dfrac{4\left(x-2\right)}{2x-1}\)

\(=\dfrac{2x^2-x}{x+2}\cdot\dfrac{2}{2x-1}\)

\(=\dfrac{x\left(2x-1\right)}{x+2}\cdot\dfrac{2}{2x-1}\)

\(=\dfrac{2x}{x+2}\)

24 tháng 6 2017

a) ĐKXĐ: \(x\ne-2;x\ne2\), rút gọn:

\(A=\left[\frac{3\left(x-2\right)-2x\left(x+2\right)+2\left(2x^2+3\right)}{2\left(x-2\right)\left(x+2\right)}\right]\div\frac{2x-1}{4\left(x-2\right)}\)

\(A=\frac{3x-6-2x^2-4x+4x^2+6}{2\left(x-2\right)\left(x+2\right)}\cdot\frac{4\left(x-2\right)}{2x-1}=\frac{4\left(2x^2-x\right)}{x\left(x+2\right)\left(2x-1\right)}=\frac{4x\left(2x-1\right)}{x\left(x+2\right)\left(2x-1\right)}=\frac{4}{x+2}\)

b) Ta có: \(\left|x-1\right|=3\Leftrightarrow\hept{\begin{cases}x-1=3\\x-1=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\left(n\right)\\x=-2\left(l\right)\end{cases}}}\)

=> Khi \(x=4\)thì \(A=\frac{4}{4+2}=\frac{4}{6}=\frac{2}{3}\)

c) \(A< 2\Leftrightarrow\frac{4}{x+2}< 2\Leftrightarrow4< 2x+4\Leftrightarrow0< 2x\Leftrightarrow x>0\)Vậy \(A< 2,\forall x>0\)

d) \(\left|A\right|=1\Leftrightarrow\left|\frac{4}{x+2}\right|=1\Leftrightarrow\hept{\begin{cases}\frac{4}{x+2}=1\\\frac{4}{x+2}=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\left(l\right)\\x=-6\left(n\right)\end{cases}}}\)Vậy \(\left|A\right|=1\)khi và chỉ khi x = -6

6 tháng 4 2018

\(a,A=\left(\dfrac{3}{2x+4}+\dfrac{x}{2-x}+\dfrac{2x^2+3}{x^2-4}\right):\left(\dfrac{2x-1}{4x-8}\right)\)

\(=\left(\dfrac{3\left(x-2\right)}{2\left(x+2\right)\left(x-2\right)}+\dfrac{-2x\left(x+2\right)}{2\left(x-2\right)\left(x+2\right)}+\dfrac{2\left(2x^2+3\right)}{2\left(x-2\right)\left(x+2\right)}\right):\dfrac{2x-1}{4\left(x-2\right)}\)

\(=\dfrac{3x-6-2x^2-4x+4x^2+6}{2\left(x-2\right)\left(x+2\right)}.\dfrac{4\left(x-2\right)}{2x-1}\)

\(=\dfrac{2x^2-x}{x+2}.\dfrac{2}{2x-1}\)

\(=\dfrac{2x}{x+2}\)

\(b,\) Để A < 2

\(\Leftrightarrow\dfrac{2x}{x+2}< 2\)

\(\Leftrightarrow\dfrac{2x}{x+2}-\dfrac{2\left(x+2\right)}{x+2}< 0\)

\(\Leftrightarrow\dfrac{-4}{x+2}< 0\)

\(\Leftrightarrow x+2>0\)

\(\Leftrightarrow x>-2\)

Vậy...............................

c,ĐKXĐ của A : x ≠ -2

\(\left|x-1\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(t/m\right)\\x=-2\left(L\right)\end{matrix}\right.\)

Thay x = 4 vào bt A : \(\dfrac{2.4}{4+2}=\dfrac{8}{6}=\dfrac{4}{3}\)

Vậy..................

23 tháng 7 2020

a)  \(ĐKXĐ:x\ne\pm2\)

\(P=\left[\frac{x^2+2x}{x^3+2x^2+4x+8}+\frac{2}{x^2+4}\right]:\left[\frac{1}{x-2}-\frac{4x}{x^3-2x^2+4x-8}\right]\)

\(\Leftrightarrow P=\left(\frac{x}{x^2+4}+\frac{2}{x^2+4}\right):\left(\frac{1}{x-2}-\frac{4x}{\left(x-2\right)\left(x^2+4\right)}\right)\)

\(\Leftrightarrow P=\frac{x+2}{x^2+4}:\frac{x^2+4-4x}{\left(x-2\right)\left(x^2+4\right)}\)

\(\Leftrightarrow P=\frac{\left(x+2\right)\left(x-2\right)\left(x^2+4\right)}{\left(x^2+4\right)\left(x-2\right)^2}\)

\(\Leftrightarrow P=\frac{x+2}{x-2}\)

b) P là số nguyên tố khi và chỉ khi \(x+2⋮x-2\)

\(\Leftrightarrow4⋮x-2\)

\(\Leftrightarrow x-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Leftrightarrow x\in\left\{1;3;0;4;-2;6\right\}\)

Loại \(x=-2\)

\(\Leftrightarrow P\in\left\{-3;5;-1;3;2\right\}\)

Vì P là số nguyên tố nên

\(P\in\left\{5;3;2\right\}\)

Vậy để P là số nguyên tố thì  \(x\in\left\{3;4;6\right\}\)

14 tháng 2 2018

a,\(ĐKXĐ:\hept{\begin{cases}x\ne\mp2\\x\ne3\\x\ne0\end{cases}}\)

\(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)

\(=\left[\frac{\left(x+2\right)^2}{\left(2-x\right)\left(x+2\right)}+\frac{4x^2}{\left(2-x\right)\left(x+2\right)}-\frac{\left(2-x\right)^2}{\left(2-x\right)\left(x+2\right)}\right]:\left[\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\right]\)

\(=\frac{x^2+4x+4+4x^2-4+4x-x^2}{\left(2-x\right)\left(x+2\right)}.\frac{x\left(2-x\right)}{x-3}\)

\(=\frac{4x\left(x+2\right)}{x+2}.\frac{x}{x-3}=\frac{4x^2}{x-3}\)

11 tháng 12 2021

\(a,P=\dfrac{2x^2-1}{x^2+x}-\dfrac{x-1}{x}+\dfrac{3}{x+1}\left(x\ne0;x\ne-1\right)\\ P=\dfrac{2x^2-1-x^2+1+3x}{x\left(x+1\right)}=\dfrac{x\left(x+3\right)}{x\left(x+1\right)}=\dfrac{x+3}{x+1}\\ b,P=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\left(tm\right)\\ c,x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow x=1\left(x\ne0\right)\\ \Leftrightarrow P=\dfrac{1+3}{1+1}=\dfrac{4}{2}=2\)

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được