Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 3+32+33+.....+3100
3A = 32+33+34+....+3101
2A = 3A - A = 3101-3 < 3101
=> A = \(\frac{3^{101}-3}{2}<3^{101}\)
=> A < B
A = 3 + 32 + 33 + 34 +.............3100
3A =32 + 33 + 34 +.............3101
3A - A = (3 + 32 + 33 + 34 +.............3100) - (32 + 33 + 34 +.............3101)
2A = 3101 - 3
\(A=\frac{3^{101}-3}{2}\)
B = 3101
Ta có A < B
S = 2+2+22+23+............+299
2S = 22+22+23+............+2100
2S - S = S = 2100 = 25.295 = 32.295 > 10.295
\(1)\)\(M=3^0+3^2+3^4+3^6+...+3^{58}\)
\(M=\left(3^0+3^2\right)+\left(3^4+3^6\right)+...+\left(3^{57}+3^{58}\right)\)
\(M=\left(3^0+3^2\right)+3^4\left(3^0+3^2\right)+...+3^{57}\left(3^0+3^2\right)\)
\(M=10+3^4.10+...+3^{57}.10\)
\(M=10\left(1+3^4+...+3^{57}\right)\)
\(M=\overline{...0}\)
Vậy \(M\) có chữ số tận cùng là \(0\)
Chúc bạn học tốt ~
1030=10.10.10.10.........10=300
còn 21000=2.2.2.2.2.2............2-2000
vậy biểu thức B lớn hơn
Ta có :
A = \(10^{30}=\left(10^3\right)^{10}=100^{10}\)
B = \(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)
=> A < B