Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Với \(x=\sqrt{2}\) là nghiệm. Đặt
Đặt \(x^3+ax^2+bx+c=(x+\sqrt{2})(x+m)(x+n)\)
Thực hiện khai triển:
\(\Leftrightarrow x^3+ax^2+bx+c=x^3+x^2(m+n+\sqrt{2})+x(mn+\sqrt{2}m+\sqrt{2}n)+\sqrt{2}mn\)
Đồng nhất hệ số:
\(\Rightarrow \left\{\begin{matrix} m+n+\sqrt{2}=a\\ mn+\sqrt{2}(m+n)=b\\ \sqrt{2}mn=c\end{matrix}\right.(*)\)
\(\Rightarrow \frac{c}{\sqrt{2}}+\sqrt{2}.a=b+2\)
\(\Rightarrow \sqrt{2}(b+2)=c+2a\in\mathbb{Q}\)
Mà \(b+2\in\mathbb{Q}; \sqrt{2}\not\in\mathbb{Q}\) nên điều trên xảy ra khi \(b+2=0\Leftrightarrow b=-2\)
Do đó: \(mn+\sqrt{2}(m+n)=-2\)
\(\Leftrightarrow (m+\sqrt{2})(n+\sqrt{2})=0\Rightarrow \left[\begin{matrix} m=-\sqrt{2}\\ n=-\sqrt{2}\end{matrix}\right.\)
Không mất tq, giả sử \(m=-\sqrt{2}\Rightarrow n=a\) (theo $(*)$)
Vậy 3 nghiệm của pt là: \((\sqrt{2}; -\sqrt{2}; a)\)
Cho phương trình (ẩn x): x3 + ax2 – 4x – 4 = 0
a) Xác định m để phương trình có một nghiệm x = 1.
b) Với giá trị m vừa tìm được, tìm các nghiệm còn lại của phương trình.
Trên phương trình có m đâu mà tìm m vậy ? Mình sửa :
\(x^3+mx^2-4x-4=0\)(1)
a) Thay \(x=1\), phương trình (1) trở thành :
\(1^3+m.1^2-4.1-4=0\)
\(\Leftrightarrow1+m-4-4=0\)
\(\Leftrightarrow m-7=0\)
\(\Leftrightarrow m=7\)
Vậy \(x=1\Leftrightarrow m=7\)
b) Thay \(m=7\), phương trình (1) trở thành :
\(x^3+7x^2-4x-4=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+8x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+8x+4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\\left(x+4\right)^2-12=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\\left(x+4-2\sqrt{3}\right)\left(x+4+2\sqrt{3}\right)=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{2\sqrt{3}-4;-2\sqrt{3}-4\right\}\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;2\sqrt{3}-4;-2\sqrt{3}-4\right\}\)
a,với x=1 có : 1+a-4-4=0 => a=7
b, với a= 7 phương trình trở thành
x3+7x2-4x-4=0 <=> \(x^3-x^2+8x^2-8x+4x-4=0\Leftrightarrow x^2\left(x-1\right)+8x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+8x+4\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\\left(x^2+8x+4\right)=0\end{cases}}\)
giải \(\left(x^2+8x+4\right)=0\)có \(\Delta'=4^2-1.4=12\Rightarrow\orbr{\begin{cases}x=-4+2\sqrt{3}\\x=-4-2\sqrt{3}\end{cases}}\)
bài 1 câu a,b tự làm nhé " thay k=-3 vào là ra
bài 1 câu c "
\(4x^2-25+k^2+4kx=0.\)
thay x=-2 vào ta được
\(16-25+k^2+-8k=0\)
\(-9+k^2-8k=0\Leftrightarrow k^2+k-9k-9=0\)
\(k\left(k+1\right)-9\left(k+1\right)=0\)
\(\left(k+1\right)\left(k-9\right)=0\)
vậy k=1 , 9 thì pt nhận x=-2
bài 2 xác đinh m ? đề ko có mờ đề phải là xác định a nếu là xác định a thì thay x=1 vào rồi tính là ra
bài 3 cũng éo hiểu xác định a ? a ở đâu
1 là phải xác đinh m , nếu là xác đinh m thì thay x=-2 vào rồi làm
. kết luận của chúa Pain đề như ###
Thay x = -3 vào pt ta đc:
-27 + 9a + 27 - 9 = 0
=> 9a - 9 =0
=> a =1
Thay a = 1 vào pt
x^3 + x^2 - 9x -9 =0
=> x^2( x + 1 ) - 9( x + 1 ) = 0
=> ( x+ 1) ( x^2 -9) =0
=>\(\orbr{\begin{cases}x=-1\\x^2-9=0\end{cases}}\)
=> x =-1 hoặc 3 hoặc -3
làm đi
tôi cũng là roronoa zoro đây