K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2021

Thấy : \(a;b;c\ge0;a+b+c=1\)  \(\Rightarrow1-a;1-b;1-c\ge0\)

AD BĐT AM - GM ta được :  \(4\left(1-a\right)\left(1-c\right)\le\left(2-a-c\right)^2=\left[2-\left(1-b\right)\right]^2=\left(b+1\right)^2\)

\(\Rightarrow4\left(1-a\right)\left(1-b\right)\left(1-c\right)\le\left(1-b\right)\left(b+1\right)^2=\left(1-b^2\right)\left(b+1\right)\le1.\left(b+1\right)=b+1=b+\left(a+b+c\right)=a+2b+c\)

( đpcm ) 

26 tháng 8 2015

Bài 1. Từ giả thiết, với chú ý abc=1, ta suy ra \(\left(a+b\right)+c=\frac{a+b}{ab}+\frac{1}{c}=c\left(a+b\right)+\frac{1}{c}\to\left(a+b\right)\left(c-1\right)=\frac{c^2-1}{c}\to\left(c-1\right)\left(a+b-\frac{c+1}{c}\right)=0\)

\(\to\frac{\left(c-1\right)\left(ac+bc-c-1\right)}{c}=0\to\left(c-1\right)\left(\frac{1}{b}-1+c\left(b-1\right)\right)=0\to\left(c-1\right)\left(b-1\right)\left(c-\frac{1}{b}\right)=0\)

\(\to\left(c-1\right)\left(b-1\right)\left(a-1\right)=0\). Vậy ba số a,b,c có 1 số bằng 1.

 

Bài 2. Từ giả thiết ta suy ra\(x^3+2xy^2+\left(x^2+8y^2\right)y=0\to x^3+x^2y+2xy^2+8y^3=0\to\)

Nếu y=0 thì x=0, khi đó không thỏa mãn \(x^2+8y^2=12\) (loại).

Với y khác 0, chia cả hai vế cho \(y^3,\) ta được

\(t^3+t^2+2t+8=0\to\left(t+2\right)\left(t^2-t+4\right)=0\to t=-2\to x=-2y\)

Thế vào phương trình thứ hai ta được \(12y^2=12\to y=\pm1\to x=\mp2.\)

Vậy ta có hai cặp nghiệm \(\left(x,y\right)=\left(2,-1\right);\left(-2;1\right).\)

 

7 tháng 10 2015

Bài 1. Từ giả thiết, với chú ý abc=1, ta suy ra $\left(a+b\right)+c=\frac{a+b}{ab}+\frac{1}{c}=c\left(a+b\right)+\frac{1}{c}\to\left(a+b\right)\left(c-1\right)=\frac{c^2-1}{c}\to\left(c-1\right)\left(a+b-\frac{c+1}{c}\right)=0$(a+b)+c=a+bab +1c =c(a+b)+1c →(a+b)(c−1)=c2−1c →(c−1)(a+b−c+1c )=0

$\to\frac{\left(c-1\right)\left(ac+bc-c-1\right)}{c}=0\to\left(c-1\right)\left(\frac{1}{b}-1+c\left(b-1\right)\right)=0\to\left(c-1\right)\left(b-1\right)\left(c-\frac{1}{b}\right)=0$→(c−1)(ac+bc−c−1)c =0→(c−1)(1b −1+c(b−1))=0→(c−1)(b−1)(c−1b )=0

$\to\left(c-1\right)\left(b-1\right)\left(a-1\right)=0$→(c−1)(b−1)(a−1)=0. Vậy ba số a,b,c có 1 số bằng 1.

 

Bài 2. Từ giả thiết ta suy ra$x^3+2xy^2+\left(x^2+8y^2\right)y=0\to x^3+x^2y+2xy^2+8y^3=0\to$x3+2xy2+(x2+8y2)y=0→x3+x2y+2xy2+8y3=0→

Nếu y=0 thì x=0, khi đó không thỏa mãn $x^2+8y^2=12$x2+8y2=12 (loại).

Với y khác 0, chia cả hai vế cho $y^3,$y3, ta được

$t^3+t^2+2t+8=0\to\left(t+2\right)\left(t^2-t+4\right)=0\to t=-2\to x=-2y$t3+t2+2t+8=0→(t+2)(t2−t+4)=0→t=−2→x=−2y

Thế vào phương trình thứ hai ta được $12y^2=12\to y=\pm1\to x=\mp2.$12y2=12→y=±1→x=∓2.

Vậy ta có hai cặp nghiệm $\left(x,y\right)=\left(2,-1\right);\left(-2;1\right).$(x,y)=(2,−1);(−2;1).

 

25 tháng 5 2021

Áp dụng BĐT cosi:

\(a\sqrt{1-b^2}=\sqrt{a^2\left(1-b^2\right)}\le\dfrac{a^2+1-b^2}{2}\)

Tương tự cx có: \(b\sqrt{1-c^2}\le\dfrac{b^2+1-c^2}{2}\)

\(c\sqrt{1-a^2}\le\dfrac{c^2+1-a^2}{2}\)

Cộng vế với vế \(\Rightarrow VT\le\dfrac{3}{2}\)

Dấu = xảy ra <=> \(\left\{{}\begin{matrix}a^2=1-b^2\\b^2=1-c^2\\c^2=1-a^2\end{matrix}\right.\) \(\Leftrightarrow a^2+b^2+c^2=3-\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2=\dfrac{3}{2}\) (đpcm)

25 tháng 10 2019

a=c+2; b= c+1; c>0 => a;b >0

\(2\left(\sqrt{a}-\sqrt{b}\right)< \frac{1}{\sqrt{b}}< =>2\sqrt{a}< 2\sqrt{b}+\frac{1}{\sqrt{b}};\)

2  vế không âm, bình phương và rút gọn ta được \(4a< 4b+4+\frac{1}{b}< =>4\left(b+1\right)< 4\left(b+1\right)+\frac{1}{b}< =>0< \frac{1}{b};\)(đúng vì b>0)

\(\frac{1}{\sqrt{b}}< 2\left(\sqrt{b}-\sqrt{c}\right)< =>\frac{1}{\sqrt{b}}+2\sqrt{b}< 2\sqrt{c}\)

bình phương và thay b= c+1 ta được điều tương tự

9 tháng 5 2020

https://olm.vn/hoi-dap/detail/81117789731.html

bạn tham khảo

9 tháng 5 2020

Ta có a+b+c=0 => \(a+b=-c\Rightarrow\left(a+b\right)^3=-c^3\Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)=3ab\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow ab+bc+ca=0\)

\(a^6+b^6+c^6=\left(a^3\right)^2+\left(b^3\right)^2+\left(c^3\right)^2=\left(a^3+b^3+c^3\right)^2-2\left(a^3b^3+b^3c^3+c^3a^3\right)\)

\(ab+bc+ca=0\Rightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)

Do đó: \(a^6+b^6+c^6=\left(3abc\right)^2-2\cdot3a^2b^2c^2=3a^2b^2c^2\)

Vậy \(\frac{a^6+b^6+c^6}{a^3+b^3+c^3}=\frac{3a^2b^2c^2}{3abc}=abc\left(đpcm\right)\)

24 tháng 8 2020

Ta chứng minh:\(\sqrt{a+bc}\ge a+\sqrt{bc}\)

\(\Leftrightarrow a+bc\ge a^2+bc+2a\sqrt{bc}\)

\(\Leftrightarrow a\ge a^2+2a\sqrt{bc}\)\(\Leftrightarrow a\ge a\left(a+2\sqrt{bc}\right)\Leftrightarrow1\ge a+2\sqrt{bc}\Leftrightarrow a+b+c\ge a+2\sqrt{bc}\)

\(\Leftrightarrow b+c-2\sqrt{bc}\ge0\Leftrightarrow\left(\sqrt{b}-\sqrt{c}\right)^2\ge0\)(luôn đúng)

\(\Leftrightarrow\sqrt{a+bc}\ge a+\sqrt{bc}\)

CMTT\(\sqrt{b+ca}\ge b+\sqrt{ca}\)

          \(\sqrt{c+ab}\ge c+\sqrt{ab}\)

\(\Leftrightarrow\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\ge a+b+c+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)Vậy ......

(Dấu = xảy ra (=) a=b=c=1/3