Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Đậu Đình Kiên - Toán lớp 7 - Học toán với OnlineMath
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ac}{a+c}\)
\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{a+c}{ac}\)
\(\Rightarrow\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}=\frac{a}{ac}+\frac{c}{ac}\)
\(\Rightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{c}+\frac{1}{a}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}\\\frac{1}{c}+\frac{1}{b}=\frac{1}{c}+\frac{1}{a}\\\frac{1}{c}+\frac{1}{a}=\frac{1}{b}+\frac{1}{a}\end{cases}}\) \(\Rightarrow\hept{\begin{cases}\frac{1}{a}=\frac{1}{c}\\\frac{1}{b}=\frac{1}{a}\\\frac{1}{c}=\frac{1}{b}\end{cases}}\)
\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)
\(\Rightarrow a=b=c\)
Khi đó : \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{1.1+1.1+1.1}{1^2+1^2+1^2}=\frac{3}{3}=1\)
Vậy \(M=1\)
Ta có: (a3+b3+c3)/ (b3+c3+d3) = a3/b3 = b3/c3 = c3/d3 (1)
mà b2 = ac ; c2 = bd
=> b3/c3 = bac/cbd = a/d (2)
Từ (1) & (2) => (a3+b3+c3)/ (b3+c3+d3) = a/d
Ta có: (a3+b3+c3)/ (b3+c3+d3) = a3/b3 = b3/c3 = c3/d3 (1)
mà b2 = ac ; c2 = bd
=> b3/c3 = bac/cbd = a/d (2)
Từ (1) & (2) => (a3+b3+c3)/ (b3+c3+d3) = a/d
Ta co a.c = b2 =b.b
Suy ra a/b =b/c (1)
Ta co a.b=c2=c.c
Suy ra a/c=c/b suy ra c/a = b/c (2)
Tu (1),(2) suy ra a/b=b/c=c/a
Ap dung tinh chat cua day ti so bang nhau ta co
a/b=b/c=c/a=a+b+c/b+c+a=1
Khi do a/b=1 suy ra a=b
b/c=1 suy ra b=c
a/c=1 suy ra a=c
Suy ra a=b=c (3)
Ta co M=b333/a111.c222
Thay (3) vao bieu thuc M ta co
M=a333/a111.a222
=a333/a111+222
=a333/a333 =1
Vay M=1
\(b^2\)= \(ac\)=> \(\frac{a}{b}\)= \(\frac{b}{c}\)(1)
\(c^2\)= \(bd\)=> \(\frac{b}{c}\)= \(\frac{c}{d}\)(2)
từ (1) và (2) => \(\frac{a}{b}\)= \(\frac{b}{c}\)= \(\frac{c}{d}\)=> \(\frac{a^3}{b^3}\)= \(\frac{c^3}{d^3}\)= \(\frac{b^3}{c^3}\)=> \(\frac{a^3}{b^3}\)= \(\frac{a}{b}\)* \(\frac{b}{c}\)* \(\frac{c}{d}\)= \(\frac{a}{d}\) (*)
\(\frac{a^3}{b^3}\)= \(\frac{b^3}{c^3}\)= \(\frac{c^3}{d^3}\)= \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) (**)
Từ (*) và (**) => \(\frac{a}{d}\)= \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) (đpcm)
b2 = ac => a/b = b/c
c2 = bd => b/c = c/d
=> a/b = b/c = c/d => a3/b3 = b3/c3 = c3/d3 = (a3 + b3 + c3) / (b3 + c3 + d3) (Theo t/c của dãy tỉ số bằng nhau)
Mà a3/b3 = a/b .a/b .a/b = a/b. b/c . c/d = a/d
Nên (a3 + b3 + c3) / (b3 + c3 + d3) = a/d
Ta có: (a3+b3+c3)/ (b3+c3+d3) = a3/b3 = b3/c3 = c3/d3 (1)
Mà b2 = ac ; c2 = bd
=> b3/c3 = bac/cbd = a/d (2)
Từ (1) & (2) => (a3+b3+c3)/ (b3+c3+d3) = a/d