Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cô hướng dẫn nhé!
d1, d2, d3 đồng quy
=> Giả sự M(x, y ) là điểm đồng quy
tọa độ điểm M là giao điểm của d1, d2
=> Tìm được điểm M
có được M(x, y) rồi em thay vào d3 để tìm k :)
theo hệ thức lượng thì OH x CD = Ox x Oy (C là giao điểm của d3 với Oy; D là giao điểm của d3 với Ox )
để OH max thì OH .CD max =>từ đây ko tính OH.CD vì nó max rồi
quay lại ta thấy OH.CD max <=> Ox x Oy bé hơn or bằng 0
mà Ox Oy của d3 thì theo hàm số d3 nhá
giải ra thì bạn dc :-(2m+6.5)2 - 52.25 bé hơn or bằn 0
=> m=-3.25
mình giải z dc ko bạn
* Trước hết tìm giao điểm của hai đường thẳng ( d 1 ) và ( d 2 ).
- Tìm hoành độ của giao điểm:
2/5x + 1/2 = 3/5x - 5/2 ⇔ 1/5x = 6/2 ⇔ x = 15.
- Tìm tung độ giao điểm:
y = 2/5.15 + 1/2 = 6,5.
*Tìm k (bằng cách thay tọa độ của giao điểm vào phương trình ( d 3 ).
6,5 = k.15 + 3,5 ⇔ 15k = 3 ⇔ k = 0,2.
Trả lời: Khi k = 0,2 thì ba đường thẳng đồng quy tại điểm (15; 6,5).
1/ Phương trình tọa độ giao điểm A của (d1) và (d2):
\(\left\{{}\begin{matrix}y=x-1\\y=2x-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\) \(\Rightarrow A\left(2;1\right)\)
Để 3 đường thẳng đồng quy \(\Rightarrow\) (d3) qua A
\(\Rightarrow2k+7=1\Rightarrow k=-3\)
2/ Gọi tọa độ điểm cố định là \(M\left(x_0;y_0\right)\)
\(\Rightarrow y_0=\left(m+4\right)x_0-m+6\) \(\forall m\)
\(\Rightarrow\left(x_0-1\right)m+4x_0-y_0+6=0\)
\(\Rightarrow\left\{{}\begin{matrix}x_0-1=0\\4x_0-y_0+6=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=1\\y_0=10\end{matrix}\right.\) \(\Rightarrow M\left(1;10\right)\)
Để đường thẳng tạo với trục Ox 1 góc \(45^0\)
\(\Rightarrow m+4=tan45^0=1\Rightarrow m=-3\)