K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

Thay a2 = b.c ta được:

\(\frac{c}{b}=\frac{b.c+c^2}{b.c+b^2}=\frac{c\left(b+c\right)}{b\left(b+c\right)}=\frac{c}{b}\)(đúng)

Vậy ta được đpcm

28 tháng 6 2017

\(\frac{c}{b}\)

26 tháng 8 2019

help

6 tháng 7 2015

Ta co a^2+c^2/b^2+a^2=c/b

       => (a^2+c^2) x b= (b^2+a^2) x c

       => a^2b+c^2b=b^2c+a^2c

       =>  bcb+c^2b=b^2c+bcc

        => b^2c+c^2b=b^2c+bc^2

6 tháng 7 2015

 

Thay \(a^2=b.c\) Ta có

\(\frac{b.c+c^2}{b^2+b.c}=\frac{c.\left(b+c\right)}{b.\left(b+c\right)}=\frac{c}{b}\)(dpcm)

1 tháng 12 2016

\(\frac{a.b}{a+b}=\frac{b.c}{b+c}=\frac{c.a}{c+a}\)

\(\Rightarrow\frac{a+b}{a.b}=\frac{b+c}{b.c}=\frac{c+a}{c.a}\) (vì a;b;c khác 0)

\(=\frac{a}{a.b}+\frac{b}{a.b}=\frac{b}{b.c}+\frac{c}{b.c}=\frac{c}{c.a}+\frac{a}{c.a}\)

\(=\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)

=> a = b = c

\(P=\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=\frac{a.a^2+a.a^2+a.a^2}{a^3+a^3+a^3}=\frac{a^3+a^3+a^3}{a^3+a^3+a^3}=1\)

26 tháng 11 2018

\(\frac{a}{c}=\frac{c}{b}\Rightarrow\frac{a^2}{c^2}=\frac{c^2}{b^2}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{c^2}=\frac{c^2}{b^2}=\text{​​}\frac{a^2+c^2}{c^2+b^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{c}{b}=\frac{a}{b}\)

=> \(\frac{a}{b}=\frac{a^2+c^2}{b^2+c^2}\left(đpcm\right)\)

b) \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55⋮55\left(đpcm\right)\)

27 tháng 11 2018

a) Từ \(\frac{a}{c}=\frac{c}{b}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{c}{b}\right)^2=\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{c^2+b^2}\)(1)

Ta có \(\left(\frac{a}{c}\right)^2=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{c}{b}=\frac{a}{b}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{a^2+c^2}{c^2+b^2}=\frac{a}{b}=\left(\frac{a}{c}\right)^2\left(đpcm\right)\)

b) Ta có \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55⋮55\left(đpcm\right)\)

2 tháng 8 2017

\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

\(\Leftrightarrow\left(a+b\right)\left(c-a\right)=\left(c+a\right)\left(a-b\right)\)

\(\Rightarrow ac-a^2+bc-ab=ac-bc+a^2-ab\)

\(\Rightarrow-a^2+bc=ac-ac-bc+a^2-ab+ab\)

\(\Rightarrow-a^2+bc=-bc+a^2\)

\(\Rightarrow2bc=2a^2\)

\(\Rightarrow bc=\frac{2a^2}{2}\)

\(\Rightarrow bc=a^2\)

Vậy a2=b.c

2 tháng 8 2017

giúp mình nha

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{b^2}{d^2}\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)

DO đó: \(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{a^2+b^2}{c^2+d^2}\)